• Главная

Хром и его соединения. Хром элемент


Хром — WiKi

Хром — элемент побочной подгруппы 6-й группы 4-го периода периодической системы химических элементов Д. И. Менделеева с атомным номером 24. Обозначается символом Cr (лат. Chromium). Простое вещество хром — твёрдый металл голубовато-белого цвета. Хром иногда относят к чёрным металлам.

Внешний вид простого вещества Свойства атома Название, символ, номер Атомная масса (молярная масса) Электронная конфигурация Радиус атома Химические свойства
Ковалентный радиус Радиус иона Электроотрицательность Электродный потенциал Степени окисления Энергия ионизации (первый электрон) Термодинамические свойства простого вещества Плотность (при н. у.) Температура плавления Температура кипения Уд. теплота плавления Уд. теплота испарения Молярная теплоёмкость Молярный объём Кристаллическая решётка простого вещества Структура решётки Параметры решётки Температура Дебая Прочие характеристики Теплопроводность Номер CAS
Chromium crystals and 1cm3 cube.jpgТвёрдый металл голубовато-белого цвета
Хром / Chromium (Cr), 24
51,9961(6)[1] а. е. м. (г/моль)
[Ar] 3d5 4s1
130 пм
118 пм
(+6e)52 (+3e)63 пм
1,66 (шкала Полинга)
−0,74
6, 3, 2, 0
 652,4 (6,76) кДж/моль (эВ)
7,19 г/см³
2130 K
2945 K
21 кДж/моль
342 кДж/моль
23,3[2] Дж/(K·моль)
7,23 см³/моль
кубическая объёмноцентрированая
2,885 Å
460 K
(300 K) 93,9 Вт/(м·К)
7440-47-3

История

Происхождение названия

Название элемент получил от греч. χρῶμα — цвет, краска — из-за разнообразия окраски своих соединений.

История

Открыт на Среднем Урале, в Березовском золоторудном месторождении. Впервые упоминается в труде М. В. Ломоносова «Первые основания металлургии» (1763 год), как красная свинцовая руда, PbCrO4. Современное название — крокоит. В 1797 году французский химик Л. Н. Воклен выделил из него новый тугоплавкий металл (скорее всего, Воклен получил карбид хрома).

Нахождение в природе

Хром является довольно распространённым элементом в земной коре (0,012 % по массе)[3]. Основные соединения хрома — хромистый железняк (хромит) FeO·Cr2O3. Вторым по значимости минералом является крокоит PbCrO4.

Месторождения

Самые большие месторождения хрома находятся в ЮАР (1-е место в мире), Казахстане, России, Зимбабве, Мадагаскаре. Также есть месторождения на территории Турции, Индии, Армении[4], Бразилии, на Филиппинах[5].

Главные месторождения хромовых руд в РФ известны на Урале (Донские и Сарановское).

Разведанные запасы в Казахстане составляют свыше 350 миллионов тонн (2-е место в мире)[5].

Геохимия и минералогия

Среднее содержание хрома в различных изверженных породах резко непостоянно. В ультраосновных породах (перидотитах) оно достигает 2 кг/т, в основных породах (базальтах и др.) — 200 г/т, а в гранитах десятки г/т. Кларк хрома в земной коре 83 г/т. Он является типичным литофильным элементом и почти весь заключен в минералах типа хромшпинелидов. Хром вместе с железом, титаном, никелем, ванадием и марганцем составляют одно геохимическое семейство.

Различают три основных минерала хрома: магнохромит (Mg, Fe)Cr2O4, хромпикотит (Mg, Fe)(Cr, Al)2O4 и алюмохромит (Fe, Mg)(Cr, Al)2O4. По внешнему виду они неразличимы, и их неточно называют «хромиты». Состав их изменчив:

  • Cr2O3 18—62 %,
  • FeO 1—18 %,
  • MgO 5—16 %,
  • Al2O3 0,2 — 0,4 (до 33 %),
  • Fe2O3 2 — 30 %,
  • примеси TiO2 до 2 %,
  • V2O5 до 0,2 %,
  • ZnO до 5 %,
  • MnO до 1 %; присутствуют также Co, Ni и др.

Собственно, хромит, то есть FeCr2O4 сравнительно редок. Помимо различных хромитов, хром входит в состав ряда других минералов — хромовой слюды (фуксита), хромового хлорита, хромвезувиана, хромдиопсида, хромтурмалина, хромового граната (уваровита) и др., которые нередко сопровождают руды, но сами промышленного значения не имеют. В экзогенных условиях хром, как и железо, мигрирует в виде взвесей и может накапливаться в глинах. Наиболее подвижной формой являются хроматы.

Получение

Хром встречается в природе в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом):

Fe(CrO2)2+4C→Fe+2Cr+4CO{\displaystyle {\mathsf {Fe(CrO_{2})_{2}+4C\rightarrow Fe+2Cr+4CO}}} 

Феррохром применяют для производства легированных сталей.

Чтобы получить чистый хром, реакцию ведут следующим образом:

1) сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе:

4Fe(CrO2)2+8Na2CO3+7O2→8Na2CrO4+2Fe2O3+8CO2{\displaystyle {\mathsf {4Fe(CrO_{2})_{2}+8Na_{2}CO_{3}+7O_{2}\rightarrow 8Na_{2}CrO_{4}+2Fe_{2}O_{3}+8CO_{2}}}}
 

2) растворяют хромат натрия и отделяют его от оксида железа;

3) переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат;

4) получают чистый оксид хрома восстановлением дихромата натрия углём:

Na2Cr2O7+2C→Cr2O3+Na2CO3+CO{\displaystyle {\mathsf {Na_{2}Cr_{2}O_{7}+2C\rightarrow Cr_{2}O_{3}+Na_{2}CO_{3}+CO}}} 

5) с помощью алюминотермии получают металлический хром:

Cr2O3+2Al→Al2O3+2Cr+130kcal{\displaystyle {\mathsf {Cr_{2}O_{3}+2Al\rightarrow Al_{2}O_{3}+2Cr+130kcal}}} 

6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты. При этом на катодах совершаются в основном 3 процесса:

  • восстановление шестивалентного хрома до трехвалентного с переходом его в раствор;
  • разряд ионов водорода с выделением газообразного водорода;
  • разряд ионов, содержащих шестивалентный хром, с осаждением металлического хрома;
Cr2O72−+14H++12e−→2Cr+7h3O{\displaystyle {\mathsf {Cr_{2}O_{7}^{2-}+14H^{+}+12e^{-}\rightarrow 2Cr+7H_{2}O}}} 

Физические свойства

В свободном виде — голубовато-белый металл с кубической объёмноцентрированной решёткой, a = 0,28845 нм. Ниже температуры 38 °C является антиферромагнетиком, выше переходит в парамагнитное состояние (точка Нееля).

Хром имеет твёрдость по шкале Мооса 5[6], один из самых твёрдых чистых металлов (уступает только иридию, бериллию, вольфраму и урану). Очень чистый хром достаточно хорошо поддаётся механической обработке.

Химические свойства

Характерные степени окисления

Для хрома характерны степени окисления +2, +3 и +6 (см. табл.). Практически все соединения хрома окрашены[7].

Степень окисления Оксид Гидроксид Характер Преобладающие формы в растворах Примечания
+2 CrO (чёрный) Cr(OH)2 (жёлтый) Основный Cr2+ (соли голубого цвета) Очень сильный восстановитель
+3 Cr2O3 (зелёный) Cr(OH)3 (серо-зелёный) Амфотерный Cr3+ (зелёные или лиловые соли)

[Cr(OH)4]− (зелёный)

+4 CrO2 не существует Несолеобразующий Встречается редко, малохарактерна
+6 CrO3 (красный) h3CrO4

h3Cr2O7

Кислотный CrO42− (хроматы, желтые)

Cr2O72− (дихроматы, оранжевые)

Переход зависит от рН среды. Сильнейший окислитель, гигроскопичен, очень ядовит.

Простое вещество

Устойчив на воздухе за счёт пассивирования. По этой же причине не реагирует с серной и азотной кислотами. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr2O3, обладающего амфотерными свойствами.

Синтезированы соединения хрома с бором (бориды Cr2B, CrB, Cr3B4, CrB2, CrB4 и Cr5B3), с углеродом (карбиды Cr23C6, Cr7C3 и Cr3C2), c кремнием (силициды Cr3Si, Cr5Si3 и CrSi) и азотом (нитриды CrN и Cr2N).

Соединения Cr(+2)

Степени окисления +2 соответствует основный оксид CrO (чёрный). Соли Cr2+ (растворы голубого цвета) получаются при восстановлении солей Cr3+ или дихроматов цинком в кислой среде («водородом в момент выделения»):

2Cr3+→Zn,HCl[H]2Cr2+{\displaystyle {\mathsf {2Cr^{3+}{\xrightarrow[{Zn,HCl}]{[H]}}2Cr^{2+}}}} 

Все эти соли Cr2+ — сильные восстановители вплоть до того, что при стоянии вытесняют водород из воды[8]. Кислородом воздуха, особенно в кислой среде, Cr2+ окисляется, в результате чего голубой раствор быстро зеленеет.

Коричневый или жёлтый гидроксид Cr(OH)2 осаждается при добавлении щелочей к растворам солей хрома(II).

Синтезированы дигалогениды хрома CrF2, CrCl2, CrBr2 и CrI2

Соединения Cr(+3)

Степени окисления +3 соответствует амфотерный оксид Cr2O3 и гидроксид Cr(OH)3 (оба — зелёного цвета). Это — наиболее устойчивая степень окисления хрома. Соединения хрома в этой степени окисления имеют цвет от грязно-лилового (в водных растворах ион Cr3+ существует в виде аквакомплексов [Cr(h3O)6]3+) до зелёного (в координационной сфере присутствуют анионы).

Cr3+ склонен к образованию двойных сульфатов вида MICr(SO4)2·12h3O (квасцов)

Гидроксид хрома (III) получают, действуя аммиаком на растворы солей хрома (III):

Cr3++3Nh4+3h3O→Cr(OH)3↓+3Nh5+{\displaystyle {\mathsf {Cr^{3+}+3NH_{3}+3H_{2}O\rightarrow Cr(OH)_{3}\downarrow +3NH_{4}^{+}}}} 

Можно использовать растворы щелочей, но в их избытке образуется растворимый гидроксокомплекс:

Cr3++3OH−→Cr(OH)3↓{\displaystyle {\mathsf {Cr^{3+}+3OH^{-}\rightarrow Cr(OH)_{3}\downarrow }}}  Cr(OH)3+3OH−→[Cr(OH)6]3−{\displaystyle {\mathsf {Cr(OH)_{3}+3OH^{-}\rightarrow [Cr(OH)_{6}]^{3-}}}} 

Сплавляя Cr2O3 со щелочами, получают хромиты:

Cr2O3+2NaOH→2NaCrO2+h3O{\displaystyle {\mathsf {Cr_{2}O_{3}+2NaOH\rightarrow 2NaCrO_{2}+H_{2}O}}} 

Непрокаленный оксид хрома(III) растворяется в щелочных растворах и в кислотах:

Cr2O3+6HCl→2CrCl3+3h3O{\displaystyle {\mathsf {Cr_{2}O_{3}+6HCl\rightarrow 2CrCl_{3}+3H_{2}O}}} 

При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):

2Na3[Cr(OH)6]+3h3O2→2Na2CrO4+2NaOH+8h3O{\displaystyle {\mathsf {2Na_{3}[Cr(OH)_{6}]+3H_{2}O_{2}\rightarrow 2Na_{2}CrO_{4}+2NaOH+8H_{2}O}}} 

То же самое происходит при сплавлении оксида хрома (III) со щелочью и окислителями, или со щелочью на воздухе (расплав при этом приобретает жёлтую окраску):

2Cr2O3+8NaOH+3O2→4Na2CrO4+4h3O{\displaystyle {\mathsf {2Cr_{2}O_{3}+8NaOH+3O_{2}\rightarrow 4Na_{2}CrO_{4}+4H_{2}O}}} 

Соединения хрома (+4)

При осторожном разложении оксида хрома(VI) CrO3 в гидротермальных условиях получают оксид хрома(IV) CrO2, который является ферромагнетиком и обладает металлической проводимостью.

Среди тетрагалогенидов хрома устойчив CrF4, тетрахлорид хрома CrCl4 существует только в парах.

Соединения хрома (+6)

Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO3 и целый ряд кислот, между которыми существует равновесие. Простейшие из них — хромовая h3CrO4 и двухромовая h3Cr2O7. Они образуют два ряда солей: желтые хроматы и оранжевые дихроматы соответственно.

Оксид хрома (VI) CrO3 образуется при взаимодействии концентрированной серной кислоты с растворами дихроматов. Типичный кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовую h3CrO4, дихромовую h3Cr2O7 и другие изополикислоты с общей формулой h3CrnO3n+1. Увеличение степени полимеризации происходит с уменьшением рН, то есть увеличением кислотности:

2CrO42−+2H+→Cr2O72−+h3O{\displaystyle {\mathsf {2CrO_{4}^{2-}+2H^{+}\rightarrow Cr_{2}O_{7}^{2-}+H_{2}O}}} 

Но если к оранжевому раствору K2Cr2O7 прилить раствор щёлочи, как окраска вновь переходит в жёлтую, так как снова образуется хромат K2CrO4:

Cr2O72−+2OH−→2CrO42−+h3O{\displaystyle {\mathsf {Cr_{2}O_{7}^{2-}+2OH^{-}\rightarrow 2CrO_{4}^{2-}+H_{2}O}}} 

До высокой степени полимеризации, как это происходит у вольфрама и молибдена, не доходит, так как полихромовая кислота распадается на оксид хрома(VI) и воду:

h3CrnO3n+1→h3O+nCrO3{\displaystyle {\mathsf {H_{2}Cr_{n}O_{3n+1}\rightarrow H_{2}O+nCrO_{3}}}} 

Растворимость хроматов примерно соответствует растворимости сульфатов. В частности, жёлтый хромат бария BaCrO4 выпадает при добавлении солей бария как к растворам хроматов, так и к растворам дихроматов:

Ba2++CrO42−→BaCrO4↓{\displaystyle {\mathsf {Ba^{2+}+CrO_{4}^{2-}\rightarrow BaCrO_{4}\downarrow }}}  2Ba2++Cr2O72−+h3O→2BaCrO4↓+2H+{\displaystyle {\mathsf {2Ba^{2+}+Cr_{2}O_{7}^{2-}+H_{2}O\rightarrow 2BaCrO_{4}\downarrow +2H^{+}}}} 

Образование кроваво-красного малорастворимого хромата серебра используют для обнаружения серебра в сплавах при помощи пробирной кислоты.

Известны пентафторид хрома CrF5 и малоустойчивый гексафторид хрома CrF6. Также получены летучие оксигалогениды хрома CrO2F2 и CrO2Cl2 (хромилхлорид).

Соединения хрома(VI) — сильные окислители, например:

K2Cr2O7+14HCl→2CrCl3+2KCl+3Cl2↑+7h3O{\displaystyle {\mathsf {K_{2}Cr_{2}O_{7}+14HCl\rightarrow 2CrCl_{3}+2KCl+3Cl_{2}\uparrow +7H_{2}O}}} 

Добавление к дихроматам перекиси водорода, серной кислоты и органического растворителя (эфира) приводит к образованию синего монопероксида хрома(VI) CrO5(CrO32-O2- , который экстрагируется в органический слой; данная реакция используется как аналитическая.

Применение

Хром — важный компонент во многих легированных сталях (в частности, нержавеющих), а также и в ряде других сплавов. Добавка хрома существенно повышает твердость и коррозийную стойкость сплавов.

Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование).

Хром применяется для производства сплавов: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности.

Биологическая роль и физиологическое действие

Хром — один из биогенных элементов, постоянно входит в состав тканей растений и животных. У животных хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов. Снижение содержания хрома в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови.

В чистом виде хром довольно токсичен[9], металлическая пыль хрома раздражает ткани лёгких. Соединения хрома(III) вызывают дерматиты.

Соединения хрома в степени окисления +6 особо токсичны. Практически вся хромовая руда обрабатывается через преобразование в дихромат натрия. В 1985 году было произведено примерно 136 000 тонн шестивалентного хрома.[10] Другими источниками шестивалентного хрома являются триоксид хрома и различные соли — хроматы и дихроматы. Шестивалентный хром используется при производстве нержавеющих сталей, текстильных красок, консервантов для дерева, при хромировании и пр.

Шестивалентный хром является признанным канцерогеном при вдыхании.[11] На многих рабочих местах сотрудники подвержены воздействию шестивалентного хрома, например, при гальваническом хромировании или сварке нержавеющих сталей.[11] В Европейском союзе использование шестивалентного хрома существенно ограничено директивой RoHS.

Шестивалентный хром транспортируется в клетки человеческого организма с помощью сульфатного транспортного механизма благодаря своей близости к сульфатам по структуре и заряду. Трёхвалентный хром, более часто встречающийся, не транспортируется в клетки.

Внутри клетки Cr(VI) восстанавливается до метастабильного пятивалентного хрома (Cr(V)), затем до трехвалентного хрома (Cr(III)). Трехвалентный хром, присоединяясь к протеинам, создает гаптены, которые включают иммунную реакцию. После их появления чувствительность к хрому не пропадает. В этом случае даже контакт с текстильными изделиями, окрашенными хромсодержащими красками или с кожей, обработанной хромом, может вызвать раздражение кожи. Витамин C и другие агенты реагируют с хроматами и образуют Cr(III) внутри клетки.[12]

Продукты шестивалентного хрома являются генотоксичными канцерогенами. Хроническое вдыхание соединений шестивалентного хрома увеличивает риск заболеваний носоглотки, риск рака лёгких. (Лёгкие особенно уязвимы из-за большого количества мелких капилляров). Видимо, механизм генотоксичности запускается пяти- и трёхвалентным хромом.

В США предельно допустимая концентрация шестивалентного хрома в воздухе составляет 5 мкг/м³ (0,005 мг/м³).[13][14] В России предельно допустимая концентрация хрома (VI) существенно ниже — 1,5 мкг/м³ (0,0015 мг/м³).[15]

Одним из общепризнанных методов избежания шестивалентного хрома является переход от технологий гальванического хромирования к газотермическому и вакуумному напылению.

Основанный на реальных событиях фильм «Эрин Брокович» режиссёра Стивена Содерберга рассказывает о крупном судебном процессе, связанном с загрязнением окружающей среды шестивалентным хромом, в результате которого у многих людей развились серьёзные заболевания.[16]

См. также

Примечания

  1. ↑ Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047-1078. — DOI:10.1351/PAC-REP-13-03-02.
  2. ↑ Редкол.:Зефиров Н. С. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Большая Российская энциклопедия, 1999. — Т. 5. — С. 308.
  3. ↑ 1.    Дроздов А. А. и др. Неорганическая химия: В 3 т./Под ред. ЮД Третьякова. T. 2: Химия переходных металлов. – 2004. 2.     Greenwood N. N., Earnshaw A. Chemistry of the Elements. – 1984.
  4. ↑ статья «Минеральные ресурсы». Энциклопедия «Кругосвет». Архивировано 21 августа 2011 года.
  5. ↑ 1 2 ХРОМ | Онлайн Энциклопедия Кругосвет.
  6. ↑ Поваренных А. С. Твердость минералов. — АН УССР, 1963. — С. 197—208. — 304 с.
  7. ↑ Реми Г. Курс неорганической химии. Т. 2. М., Мир, 1966. С. 142—180.
  8. ↑ Некрасов Б. В. Курс общей химии. М:, ГНХТИ, 1952, С. 334
  9. ↑ Хром // Большая медицинская энциклопедия : в 30 т. / гл. ред.Б.В. Петровский. — 3 изд. — Москва : Советская энциклопедия, 1986. — Т. 27. Хлоракон - Экономика здравоохранения. — 576 с. — 150 000 экз.
  10. ↑ Gerd Anger, Jost Halstenberg, Klaus Hochgeschwender, Christoph Scherhag, Ulrich Korallus, Herbert Knopf, Peter Schmidt, Manfred Ohlinger, «Chromium Compounds» in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005.
  11. ↑ 1 2 IARC. Volume 49: Chromium, Nickel, and Welding. — Lyon : International Agency for Research on Cancer, 1999-11-05. — «There is sufficient evidence in humans for the carcinogenicity of chromium[VI] compounds as encountered in the chromate production, chromate pigment production and chromium plating industries.». — ISBN 92-832-1249-5.
  12. ↑ Salnikow, K. and Zhitkovich, A., «Genetic and Epigenetic Mechanisms in Metal Carcinogenesis and Cocarcinogenesis: Nickel, Arsenic, and Chromium», Chem. Res. Toxicol., 2008, 21, 28-44. DOI:10.1021/tx700198a
  13. ↑ OSHA: Small Entity Compliance Guide for the Hexavalent Chromium Standards
  14. ↑ David Blowes (2002). «Tracking Hexavalent Cr in Groundwater». Science 295: 2024–25. DOI:10.1126/science.1070031. PMID 11896259.
  15. ↑ ПДК воздуха населенных мест
  16. ↑ Официальный сайт Эрин Брокович, страница, посвящённая фильму

Ссылки

ru-wiki.org

Хром и его соединения

Хром

Открытие хрома относится к периоду бурного развития химико-аналитических исследований солей и минералов. В России химики проявляли особый интерес к анализу минералов, найденных в Сибири и почти неизвестных в Западной Европе. Одним из таких минералов была сибирская красная свинцовая руда (крокоит), описанная еще Ломоносовым. Минерал исследовался, но ничего, кроме окислов свинца, железа и алюминия в нем не было найдено. Однако в 1797 году Вокелен, прокипятив тонко измельченный образец минерала с поташом  и осадив карбонат свинца, получил раствор, окрашенный в оранжево – красный цвет. Из этого раствора он выкристаллизовал рубиново-красную соль, из которой выделили окисел и свободный металл, отличный от всех известных металлов. Вокелен назвал его Хром (Chrome) от греческого слова - окраска, цвет; правда здесь имелось в виду свойство не металла, а его ярко окрашенных солей.

Нахождение в природе.

Важнейшей рудой хрома, имеющей практическое значение, является хромит, приблизительный состав которого отвечает формуле FeCrO4. 

undefined

Он встречается в Малой Азии, на Урале, в Северной Америке, на юге Африки. Техническое значение имеет также вышеназванный минерал крокоит – PbCrO4. В природе встречаются также оксид хрома (3) и некоторые другие его соединения. В земной коре содержание хрома в пересчете на металл составляет 0,03%. Хром обнаружен на Солнце, звездах, метеоритах.

Физические свойства. 

Хром – белый, твердый и хрупкий металл, исключительно химически стойкий к воздействию кислот и щелочей. На воздухе он окисляется, имеет на поверхности тонкую прозрачную пленку оксида. Хром имеет плотность 7,1 г/см3 , его температура плавления составляет  +18750С.

Получение.

При сильном нагреве хромистого железняка с углем происходит восстановление хрома и железа:

FeO * Cr2O3 + 4C = 2Cr + Fe + 4CO

В результате этой реакции образуется сплав хрома с железом, отличающийся высокой прочностью. Для получения чистого хрома, его восстанавливают из оксида хрома(3) алюминием:

Cr2O3 + 2Al = Al2O3 + 2Cr

В данном процессе обычно используют два оксида – Cr2O3 и CrO3

Химические свойства. 

Благодаря тонкой защитной пленке оксида, покрывающей поверхность хрома, он весьма устойчив к воздействию агрессивных кислот и щелочей. Хром не реагирует с концентрированными азотной и серной кислотами, а также с фосфорной кислотой. Со щелочами хром вступает во взаимодействие при t = 600-700оC. Однако хром взаимодействует с разбавленными серной и соляной кислотами, вытесняя водород:

2Cr + 3h3SO4 = Cr2(SO4)3 + 3h32Cr + 6HCl = 2CrCl3 + 3h3

При высокой температуре хром горит в кислороде, образуя оксид(III).

Раскаленный хром реагирует с парами воды:

2Cr + 3h3O = Cr2O3 + 3h3   

Хром при  высокой температуре реагирует также с галогенами, галоген - водородами, серой, азотом, фосфором, углем, кремнием, бором, например:                                

Cr + 2HF = CrF2 + h32Cr + N2 = 2CrN2Cr + 3S = Cr2S3Cr + Si = CrSi

Вышеуказанные физические и химические свойства хрома нашли свое применение в различных областях науки и техники. Так, например, хром и его сплавы используются для получения высокопрочных, коррозионно-стойких покрытий в машиностроении. Сплавы в виде феррохрома используются в качестве металлорежущих инструментов. Хромированные сплавы нашли применение в медицинской технике, при изготовлении химического технологического оборудования. 

undefined

Положение хрома в периодической системе химических элементов:

Хром возглавляет побочную подгруппу VI группы периодической системы элементов. Его электронная формула следующая:

+24Cr    IS22S22P63S23P63d54S1

В заполнении орбиталей электронами у атома хрома нарушается закономерность, согласно которой сначала должна была бы заполнятся 4S – орбиталь до состояния 4S2. Однако, вследствие того, что 3d – орбиталь занимает в атоме хрома более выгодное энергетическое положение, происходит ее заполнение до значения 4d5. Такое явление наблюдается у атомов некоторых других элементов побочных подгрупп. Хром может проявлять степени окисления от +1 до +6. Наиболее устойчивыми являются cоединения хрома со степенями окисления +2, +3, +6. 

Соединения двухвалентного хрома.

Оксид хрома (II) CrO – пирофорный черный порошок (пирофорность – способность в тонкораздробленном состоянии воспламенятся на воздухе). CrO растворяется в разбавленной соляной кислоте:

CrO + 2HCl = CrCl2 + h3O

На воздухе при нагревании свыше 1000С CrO превращается в Cr2O3.

Соли двухвалентного хрома образуются при растворении металлического хрома в кислотах. Эти реакции проходят в атмосфере малоактивного газа (например h3), т.к. в присутствии воздуха легко происходит окисление Cr(II) до Cr(III).

Гидроксид хрома получают в виде желтого осадка при действии раствора щелочи на хлорид хрома (II): 

CrCl2 + 2NaOH = Cr(OH)2 + 2NaCl

Cr(OH)2 обладает основными свойствами, является восстановителем. Гидратированный ион Cr2+ окрашен в бледно – голубой цвет. Водный раствор CrCl2 имеет синюю окраску. На воздухе в водных растворах соединения Cr(II) переходят в соединения Cr(III). Особенно это ярко выражается у гидроксида Cr(II): 

4Cr(OH)2 + 2h3O + O2 = 4Cr(OH)3

Соединения трехвалентного хрома.

Оксид хрома (III) Cr2O3 – тугоплавкий порошок зеленого цвета. По твердости близок к корунду. В лаборатории его можно получить нагреванием дихромата аммония: 

(Nh5)2Cr2O7 = Cr2O3 + N2 + 4h3

Cr2O3 – амфотерный оксид, при сплавлении со щелочами образует хромиты: Cr2O3 + 2NaOH = 2NaCrO2 + h3O 

Гидроксид хрома также является амфотерным соединением:

Cr(OH)3 + HCl = CrCl3 + 3h3OCr(OH)3 + NaOH = NaCrO2 + 2h3O

Безводный CrCl3 имеет вид листочков темно-фиолетового цвета, совершенно нерастворим в холодной воде, при кипячении он растворяется очень медленно. Безводный сульфат хрома (III) Cr2(SO4)3 розового цвета, также плохо растворим в воде. В присутствии восстановителей образует фиолетовый сульфат хрома Cr2(SO4)3*18h3O. Известны также зеленые гидраты сульфата хрома, содержащие меньшее количество воды. Хромовые квасцы KCr(SO4)2*12h3O выкристаллизовываются из растворов, содержащих фиолетовый сульфат хрома и сульфат калия. Раствор хромовых квасцов при нагревании становится зеленым благодаря образованию сульфатов.

Реакции с хромом и его соединениями

Почти все соединения хрома и их растворы интенсивно окрашены. Имея бесцветный раствор или белый осадок, мы можем с большой долей вероятности сделать вывод об отсутствии хрома.

  1. Сильно нагреем в пламени горелки на фарфоровой чашке такое количество бихромата калия, которое поместится на кончике ножа. Соль не выделит кристаллизационной воды, а расплавится при температуре около 4000С с образование темной жидкости. Погреем ее еще несколько минут на сильном пламени. После охлаждения на черепке образуется зеленый осадок. Часть его растворим в воде ( она приобретает желтый цвет), а другую часть оставим на черепке. Соль при нагревании разложилась, в результате образовался растворимый желтый хромат калия K2CrO4 и зеленый Cr2O3.
  2. Растворим 3г порошкообразного бихромата калия в 50мл воды. К одной части добавим немного карбоната калия. Он растворится с выделением CO2, а окраска раствора станет светло – желтой. Из бихромата калия образуется хромат. Если теперь по порциям добавить 50% раствор серной кислоты, то снова появится красно – желтая окраска бихромата.
  3. Нальем в пробирку 5мл. раствора бихромата калия, прокипятим с 3мл концентрированной соляной кислоты под тягой. Из раствора выделяется желто-зеленый ядовитый газообразный хлор, потому, что хромат окислит HCl до Cl2 и h3O. Сам хромат превратится в зеленый хлорид трехвалентного хрома. Его можно выделить выпариванием раствора, а потом, сплавив с содой и селитрой, перевести в хромат.
  4. При добавлении раствора нитрата  свинца выпадает желтый хромат свинца; при взаимодействии с раствором нитрата серебра образуется красно – коричневый осадок хромата серебра.
  5. Добавим пероксид водорода к раствору бихромата калия и подкислим раствор серной кислотой. Раствор приобретает глубокий синий цвет благодаря образованию пероксида хрома. Пероксид при взбалтывании с некоторым количеством эфира перейдет в органический растворитель и окрасит его в голубой цвет. Данная реакция специфична для хрома и очень чувствительна. С ее помощью можно обнаружить хром в металлах и сплавах. Прежде всего необходимо растворить металл. При длительном кипячении с 30% - ной серной кислотой (можно добавить и соляную кислоту) хром и многие стали частично растворяются. Полученный раствор содержит сульфат хрома (III). Чтобы можно было провести реакцию обнаружения, сначала нейтрализуем его едким натром. В осадок выпадает серо-зеленый гидроксид хрома (III), который растворится в избытке NaOH и образует зеленый хромит натрия. Профильтруем раствор и добавим 30% -ый пероксид водорода. При нагревании раствор окрасится в желтый цвет, так как хромит окислится до хромата. Подкисление приведет к появлению голубой окраски раствора. Окрашенное соединение можно экстрагировать, встряхивая с эфиром.

Аналитические реакции на ионы хрома.

  1. К 3-4 каплям раствора хлорида хрома CrCl3 прибавьте 2М раствор NaOH до растворения первоначально выпавшего осадка. Обратите внимание на цвет образовавшегося хромита натрия. Нагрейте полученный раствор на водяно бане. Что при этом происходит?
  2. К 2-3 каплям р-ра CrCl3 прибавьте равный объем 8М раствора NaOH и 3-4 капли 3% р-ра h3O2. Нагрейте реакционную смесь на водяной бане. Что при этом происходит? Какой осадок образуется, если полученный окрашеный раствор нейтрализовать,  добавить к нему Ch4COOH, а затем Pb(NO3)2?
  3. Налейте в пробирку по 4-5 капель растворов сульфата хрома Cr2(SO4)3, IMh3SO4 и KMnO4. Нагрейте реакционную смест в течение нескольких минут на водяной бане. Обратите внимание на изменение окраски раствора. Чем оно вызвано?
  4. К 3-4 каплям подкисленного азотной кислотой раствора K2Cr2O7 прибавьте 2-3 капли раствора h3O2 и перемешайте. Появляющиеся синее окрашивание раствора обусловлено возникновением надхромовой кислоты h3CrO6:

Cr2O72- + 4h3O2 + 2H+ = 2h3CrO6 + 3h3O

Обратите внимание на на быстрое разложение h3CrO6:

2h3CrO6 + 8H+ = 2Cr3+ + 3O2 + 6h3O  синий цвет          зеленый цвет

Надхромовая кислота значительно более устойчива в органических растворителях.

  1. К 3-4 каплям подкисленного азотной кислотой раствора K2Cr2O7 прибавьте 5 капель изоамилового спирта, 2-3 капли раствора h3O2  и взболтайте реакционную смесь. Всплывающий на верх слой органического растворителя окрашен в ярко-синий цвет. Окраска исчезает очень медленно. Сравните устойчивость h3CrO6 в органической и водных фазах.
  2. При взаимодействии CrO42- и ионами Ba2+ выпадает желтый осадок хромата бария BaCrO4.
  3.  Нитрат серебра образует с ионами CrO42- осадок хромата серебра кирпично-красного цвета.
  4. Возьмите три пробирки. В одну из них поместите  5- 6 капель раствора K2Cr2O7, во вторую – такой же объем раствора K2CrO4, а в третью – по три капли обоих растворов. Затем добавте в каждую пробирку по три капли раствора иодида калия. Объясните полученный результат. Подкислите раствор во второй пробирке. Что при этом происходит? Почему?

Занимательные опыты с соединениями хрома 

  1. Смесь CuSO4 и K2Cr2O7 при добавлении щелочи становится зеленой, а в присутствии кислоты становится желтой. Нагревая 2мг глицерина с небольшим количеством (Nh5)2Cr2O7 с последующим добавлением спирта, после фильтрования получается ярко-зеленый раствор, который при добавлении кислоты становится желтым, а в нейтральной или щелочной среде становится зеленым.
  2. Поместить в центр консервной банки с термитом «рубиновую смесь» - тщательно растертый и помещенный в алюминиевую фольгу Al2O3 (4,75г) с добавкой Cr2O3(0,25г). Чтобы банка подольше не остывала, необходимо закопать под верхний обрез в песок, а после поджигания термита и начала реакции, накрыть ее железным листом и засыпать песком. Банку выкопать через сутки. В итоге образуется красно – рубиновый порошок.
  3. 10г бихромата калия растирают с 5г нитрата натрия  или калия и 10г сахара. Смесь увлажняют и смешивают с коллодием. Если порошок спрессовать в стеклянной трубке, а затем вытолкнуть палочку и поджечь ее с торца, то начнет выползать «змея», сначала черная, а после охлаждения  - зеленая. Палочка диаметром 4 мм горит со скоростью около 2мм в секунду и удлиняется  в 10 раз.
  4. Если смешать растворы сульфата меди и дихромата калия и добавить немного раствора аммиака, то выпадет аморфный коричневый осадок состава 4СuCrO4 * 3Nh4 * 5h3O, который растворяется в соляной кислоте с образованием желтого раствора, а в избытке аммиака получается зеленый раствор. Если далее к этому раствору добавить спирт, то выпадет зеленый осадок, который после фильтрации становится синим, а после высушивания – сине-фиолетовым с красными блестками, хорошо видимыми при сильном освещении.
  5. Оставшийся после опытов «вулкан» или «фараоновы змеи» оксид хрома можно регенерировать. Для этого надо сплавить 8г Cr2O3 и 2г Na2CO3 и 2,5г KNO3 и обработать остывший сплав кипятком. Получается растворимый хромат, который можно превратить и в другие соединения Cr(II) и Cr(VI), в том числе и исходный дихромат аммония.

Примеры окислительно – восстановительных переходов с участием хрома и его соединений

1. Cr2O72- -- Cr2O3 -- CrO2- -- CrO42- -- Cr2O72-

a) (Nh5)2Cr2O7 = Cr2O3 + N2 + 4h3Oundefinedб) Cr2O3 + 2NaOH = 2NaCrO2 + h3Oв) 2NaCrO2 + 3Br2 + 8NaOH = 6NaBr +2Na2CrO4 + 4h3Oг) 2Na2CrO4 + 2HCl = Na2Cr2O7 + 2NaCl + h3O

2. Cr(OH)2 -- Cr(OH)3 -- CrCl3 -- Cr2O72- -- CrO42-

а) 2Cr(OH)2 + 1/2O2 + h3O = 2Cr(OH)3б) Cr(OH)3 + 3HCl = CrCl3 + 3h3Oв) 2CrCl3 + 2KMnO4 + 3h3O = K2Cr2O7 + 2Mn(OH)2 + 6HClг) K2Cr2O7 + 2KOH = 2K2CrO4 + h3O

3. CrO -- Cr(OH)2 -- Cr(OH)3 -- Cr(NO3)3 -- Cr2O3 -- CrO-2          Cr2+

а) CrO + 2HCl = CrCl2 + h3Oб) CrO + h3O = Cr(OH)2в) Cr(OH)2 + 1/2O2 + h3O = 2Cr(OH)3г) Cr(OH)3 + 3HNO3 = Cr(NO3)3 + 3h3Oд) 4Сr(NO3)3 = 2Cr2O3 + 12NO2 + O2е) Cr2O3 + 2 NaOH = 2NaCrO2 + h3O

Элемент хром в роли художника

Химики довольно часто обращались к проблеме создания искусственных пигментов для живописи. В XVIII-XIXвв была разработана технология получения многих живописных материалов. Луи Никола Воклен в 1797г., обнаруживший в сибирской красной руде ранее неизвестный элемент хром, приготовил новую, замечательно устойчивую краску – хромовую зелень. Хромофором ее является  водный оксид хрома (III). Под названием « изумрудная зеленая» ее начали выпускать в 1837 году. Позже Л.Вокелен предложил несколько новых красок: баритовую, цинковую и хромовые желтые. Со временем они были вытеснены более стойкими желтыми, оранжевыми пигментами на основе кадмия.

Зеленая хромовая – самая прочная и светостойкая краска, не поддающаяся воздействию атмосферных газов. Растертая на масле хромовая зелень обладает большой кроющей силой и способна к быстрому высыханию, поэтому с XIX в. ее широко применяют в живописи. Огромное значение она имеет в росписи фарфора. Дело в том, что фарфоровые изделия могут декорироваться как подглазурной, так и надглазурной росписью. В первом случае краски наносят на поверхность лишь слегка обожженного изделия, которое затем покрывают слоем глазури. Далее следует основной, высокотемпературный обжиг: для спекания фарфоровой массы и оплавления глазури изделия нагревают до 1350 – 14500С. Столь высокую температуру без химических изменений выдерживают очень немногие краски, а в старину таких вообще было только две – кобальтовая и хромовая. Черный оксид кобальта, нанесенный на поверхность фарфорового изделия, при обжиге сплавляется с глазурью, химически взаимодействуя с ней. В результате образуются ярко-синие силикаты кобальта. Такую декарированную кобальтом синюю фарфоровую посуду все хорошо знают. Оксид хрома (III) не взаимодействует химически с компонентами глазури и просто залегает между фарфоровыми черепками и прозрачной глазурью «глухим» слоем.         

Помимо хромовой зелени художники применяют краски, полученные из волконскоита. Этот минерал из группы монтмориллонитов (глинистый минерал подкласса сложных силикатов Na(Mo,Al), Si4O10(OH)2 был обнаружен в 1830г. русским минералогом Кеммерером и назван в честь М.Н Волконской – дочери героя битвы при Бородино генерала Н.Н. Раевского, жены декабриста С.Г.Волконского. Волконскоит представляет собой глину, содержащую до 24% оксида хрома, а так же оксиды аллюминея и железа (III). Непостоянство состава минерала, встечающегося на Урале, в Пермской и Кировской областях, обусловливает его разнообразную окраску – от цвета зимней потемневшей пихты до ярко-зеленого цвета болотной лягушки. 

Пабло Пикассо обращался к геологам нашей страны  с просьбой изучить запасы волконскоита, дающего краску неповторимо свежего тона. В настоящее время разработан способ получения искусственного волконскоита. Интересно отметить, что по данным современных исследований, русские иконописцы использовали краски из этого материала еще в средние века, задолго до его «официального» открытия. Известной популярностью пользовалась у художников и зелень Гинье (создана в 1837г.), хромоформ которой является гидрат окиси хрома Cr2O3 * (2-3) h3O, где часть воды химически связана, а часть адсорбирована. Этот пигмент придает краске изумрудный оттенок.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Химический элемент хром

Хром

Элемент №24. Один из самых твердых металлов. Обладает высокой химической стойкостью. Один из важнейших металлов, используемых в производстве легированных сталей. Большинство соединений хрома имеет яркую окраску, причем самых разных цветов. За эту особенность элемент и был назван хромом, что в переводе с греческого означает «краска».

Как его нашли

Минерал, содержащий хром, был открыт близ Екатеринбурга в 1766 г. И.Г. Леманном и назван «сибирским красным свинцом». Сейчас этот минерал называется крокоитом. Известен и его состав – РbCrО4 . А в свое время «сибирский красный свинец» вызвал немало разногласий среди ученых. Тридцать лет спорили о его составе, пока, наконец, в 1797 г. французский химик Луи Никола Воклен не выделил из него металл, который (тоже, кстати, после некоторых споров) назвали хромом.

Воклен обработал крокоит поташем К2 CO3 : хромат свинца превратился в хромат калия. Затем с помощью соляной кислоты хромат калия был превращен в окись хрома и воду (хромовая кислота существует только в разбавленных растворах). Нагрев зеленый порошок окиси хрома в графитовом тигле с углем, Воклен получил новый тугоплавкий металл.

Парижская академия наук по всей форме засвидетельствовала открытие. Но, скорее всего, Воклен выделил не элементарный хром, а его карбиды. Об этом свидетельствует иглообразная форма полученных Вокленом светлосерых кристаллов.

Название «хром» предложили друзья Воклена, но оно ему не понравилось – металл не отличался особым цветом. Однако друзьям удалось уговорить химика, ссылаясь на то, что из ярко окрашенных соединений хрома можно получать хорошие краски. (Кстати, именно в работах Воклена впервые объяснена изумрудная окраска некоторых природных силикатов бериллия и алюминия; их, как выяснил Воклен, окрашивали примеси соединений хрома.) Так и утвердилось за новым элементом это название.

Между прочим, слог «хром», именно в смысле «окрашенный», входит во многие научные, технические и даже музыкальные термины. Широко известны фотопленки «изопанхром», «панхром» и «ортохром». Слово «хромосома» в переводе с греческого означает «тело, которое окрашивается». Есть «хроматическая» гамма (в музыке) и есть гармоника «хромка».

Где он находится

В земной коре хрома довольно много – 0,02%. Основной минерал, из которого промышленность получает хром, – это хромовая шпинель переменного состава с общей формулой (Mg, Fe) О · (Сr, Al, Fе)2 O3 . Хромовая руда носит название хромитов или хромистого железняка (потому, что почти всегда содержит и железо). Залежи хромовых руд есть во многих местах. Наша страна обладает огромными запасами хромитов. Одно из самых больших месторождений находится в Казахстане, в районе Актюбинска; оно открыто в 1936 г. Значительные запасы хромовых руд есть и на Урале.

Хромиты идут большей частью на выплавку феррохрома. Это – один из самых важных ферросплавов, абсолютно необходимый для массового производства легированных сталей.

Ферросплавы – сплавы железа с другими элементами, применяемыми главным обрядом для легирования и раскисления стали. Феррохром содержит не менее 60% Cr.

Царская Россия почти не производила ферросплавов. На нескольких доменных печах южных заводов выплавляли низкопроцентные (по легирующему металлу) ферросилиций и ферромарганец. Да еще на реке Сатке, что течет на Южном Урале, в 1910 г. был построен крошечный заводик, выплавлявший мизерные количества ферромарганца и феррохрома.

Молодой Советской стране в первые годы развития приходилось ввозить ферросплавы из-за рубежа. Такая зависимость от капиталистических стран была недопустимой. Уже в 1927...1928 гг. началось сооружение советских ферросплавных заводов. В конце 1930 г. была построена первая крупная ферросплавная печь в Челябинске, а в 1931 г. вступил в строй Челябинский завод – первенец ферросплавной промышленности СССР. В 1933 г. были пущены еще два завода – в Запорожье и Зестафони. Это позволило прекратить ввоз ферросплавов. Всего за несколько лет в Советском Союзе было организовано производство множества видов специальных сталей – шарикоподшипниковой, жароупорной, нержавеющей, автотракторной, быстрорежущей... Во все эти стали входит хром.

На XVII съезде партии нарком тяжелой промышленности Серго Орджоникидзе говорил: «...если бы у нас не было качественных сталей, у нас не было бы автотракторной промышленности. Стоимость расходуемых нами сейчас качественных сталей определяется свыше 400 млн руб. Если бы надо было ввозить, это – 400 млн руб. ежегодно, вы бы, черт побери, в кабалу попали к капиталистам...»

Завод на базе Актюбинского месторождения построен позже, в годы Великой Отечественной войны. Первую плавку феррохрома он дал 20 января 1943 г. В сооружении завода принимали участие трудящиеся города Актюбинска. Стройка была объявлена народной. Феррохром нового завода шел на изготовление металла для танков и пушек, для нужд фронта.

Прошли годы. Сейчас Актюбинский ферросплавный завод – крупнейшее предприятие, выпускающее феррохром всех марок. На заводе выросли высококвалифицированные национальные кадры металлургов. Из года в год завод и хромитовые рудники наращивают мощность, обеспечивая нашу черную металлургию высококачественным феррохромом.

В нашей стране есть уникальное месторождение природнолегированных железных руд, богатых хромом и никелем. Оно находится в оренбургских степях. На базе этого месторождения построен и работает Орско-Халиловский металлургический комбинат. В доменных печах комбината выплавляют природнолегированный чугун, обладающий высокой жароупорностью. Частично его используют в виде литья, но большую часть отправляют на передел в никелевую сталь; хром при выплавке стали из чугуна выгорает.

Большими запасами хромитов располагают Куба, Югославия, многие страны Азии и Африки.

Как его получают

Хромит применяется преимущественно в трех отраслях промышленности: металлургии, химии и производстве огнеупоров, причем металлургия потребляет примерно две трети всего хромита.

Сталь, легированная хромом, обладает повышенной прочностью, стойкостью против коррозии в агрессивных и окислительных средах.

Получение чистого хрома – дорогой и трудоемкий процесс. Поэтому для легирования стали применяют главным образом феррохром, который получают в дуговых электропечах непосредственно из хромита. Восстановителем служит кокс. Содержание окиси хрома в хромите должно быть не ниже 48%, а отношениеCr: Fe не менее 3: 1.

Полученный в электропечи феррохром обычно содержит до 80% хрома и 4...7% углерода (остальное – железо).

Но для легирования многих качественных сталей нужен феррохром, содержащий мало углерода (о причинах этого – ниже, в главе «Хром в сплавах»). Поэтому часть высокоуглеродистого феррохрома подвергают специальной обработке, чтобы снизить содержание углерода в нем до десятых и сотых долей процента.

Из хромита получают и элементарный, металлический хром. Производство технически чистого хрома (97...99%) основано на методе алюминотермии, открытом еще в 1865 г. известным русским химиком Н.Н. Бекетовым. Сущность метода – в восстановлении окислов алюминием, реакция сопровождается значительным выделением тепла.

Но предварительно надо получить чистую окись хрома Сr2 О3 . Для этого тонко измельченный хромит смешивают с содой и добавляют к этой смеси известняк или окись железа. Вся масса обжигается, причем образуется хромат натрия:

2Сr2 О3 + 4Na2 CO3 + 3О2 → 4Na2 CrO4 + 4CO2 .

Затем хромат натрия выщелачивают из обожженной массы водой; щелок фильтруют, упаривают и обрабатывают кислотой. В результате получается бихромат натрия Na2 Cr2 O7 . Восстанавливая его серой или углеродом при нагревании, получают зеленую окись хрома.

Металлический хром можно получить, если чистую окись хрома смешать с порошком алюминия, нагреть эту смесь в тигле до 500...600°C и поджечь с помощью перекиси бария, Алюминий отнимает у окиси хрома кислород. Эта реакция Сr2 О3 + 2Аl → Аl2 O3 + 2Сr – основа промышленного (алюминотермического) способа получения хрома, хотя, конечно, заводская технология значительно сложнее. Хром, полученный алюминотермически, содержит алюминия и железа десятые доли процента, а кремния, углерода и серы – сотые доли процента.

Используют также силикотермический способ получения технически чистого хрома. В этом случае хром из окиси восстанавливается кремнием по реакции

2Сr2 О3 + 3Si → 3SiO2 + 4Сr.

Эта реакция происходит в дуговых печах. Для связывания кремнезема в шихту добавляют известняк. Чистота силикотермического хрома примерно такая же, как и алюминотермического, хотя, разумеется, содержание в нем кремния несколько выше, а алюминия несколько ниже. Для получения хрома пытались применить и другие восстановители – углерод, водород, магний. Однако эти способы не получили широкого распространения.

Хром высокой степени чистоты (примерно 99,8%) получают электролитически.

Технически чистый и электролитический хром идет главным образом на производство сложных хромовых сплавов.

Константы и свойства хрома

Атомная масса хрома 51,996. В менделеевской таблице он занимает место в шестой группе. Его ближайшие соседи и аналоги – молибден и вольфрам. Характерно, что соседи хрома, так же как и он сам, широко применяются для легирования сталей.

Температура плавления хрома зависит от его чистоты. Многие исследователи пытались ее определить и получили значения от 1513 до 1920°C. Такой большой «разброс» объясняется прежде всего количеством и составом содержащихся в хроме примесей. Сейчас считают, что хром плавится при температуре около 1875°C. Температура кипения 2199°C. Плотность хрома меньше, чем железа; она равна 7,19.

По химическим свойствам хром близок к молибдену и вольфраму. Высший окисел его CrО3 – кислотный, это – ангидрид хромовой кислоты Н2 CrО4 . Минерал крокоит, с которого мы начинали знакомство с элементом №24, – соль этой кислоты. Кроме хромовой, известна двухромовая кислота h3 Cr2 O7 , в химии широко применяются ее соли – бихроматы. Наиболее распространенный окисел хрома Cr2 О3 – амфотерен. А вообще в разных условиях хром может проявлять валентности от 2 до 6. Широко используются только соединения трех- и шестивалентного хрома.

mirznanii.com

хром - это... Что такое хром?

ХРОМ -а; м. [от греч. chrōma - цвет, краска]

1. Химический элемент (Сr), твёрдый металл серо-стального цвета (используется при изготовлении твёрдых сплавов и для покрытия металлических изделий).

2. Мягкая тонкая кожа, выдубленная солями этого металла. Сапоги из хрома.

◁ Хро́мовый (см.).

ХРОМ (лат. chromium, от греческого хрома — цвет, окраска, для соединений хрома характерна широкая цветовая палитра), Cr (читается «хром»), химический элемент с атомным номером 24, атомная масса 51,9961. Расположен в группе VIB в 4 периоде периодической системы элементов. Природный хром состоит из смеси четырех стабильных нуклидов: 50Cr (содержание в смеси 4,35%), 52Cr (83,79%), 53Cr (9,50%) и 54Cr (2,36%). Конфигурация двух внешних электронных слоев 3s2р6d54s1. Степени окисления от 0 до +6 , наиболее характерны +3 (самая устойчивая) и +6 (валентности III и VI). Радиус нейтрального атома 0,127 нм, радиус ионов (координационное число 6): Cr2+ 0,073 нм, Cr3+ 0,0615 нм, Cr4+ 0,055 нм, Cr5+ 0,049 нм и Cr6+0,044 нм. Энергии последовательной ионизации 6,766, 16,49, 30,96, 49,1, 69,3 и 90,6 эВ. Сродство к электрону 1,6 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,66. История открытия В 1766 в окрестностях Екатеринбурга был обнаружен минерал, который получил название «сибирский красный свинец», PbCrO4. Современное название — крокоит. В 1797 французский химик Л. Н. Воклен (см. ВОКЛЕН Луи Никола) выделил из него новый тугоплавкий металл (скорее всего Воклен получил карбид хрома). Нахождение в природе Содержание в земной коре 0,035 % по массе. В морской воде содержание хрома 2·10-5 мг/л. В свободном виде хром практически не встречается. Входит в состав более 40 различных минералов (хромит FeCr2O4, волконскоит, уваровит, вокеленит и др.). Некоторые метеориты содержат сульфидные соединения хрома. Получение Промышленным сырьем при производстве хрома и сплавов на его основе служит хромит. Восстановительной плвкой хромита с коксом (восстановителем), железной рудой и другими компонентами получают феррохром с содержанием хрома до 80% (по массе). Для получения чистого металлического хрома хромит с содой и известняком обжигают в печах: 2Cr2O3 + 2Na2CO3+ 3O2 = 4Na2CrO4 + 4CO2Образующийся хромат натрия Na2CrO4 выщелачивают водой, раствор фильтруют, упаривают и обрабатывают кислотой. При этом хромат Na2CrO4 переходит в дихромат Na2Cr2O7: 2Na2CrO4 + h3SO4 = Na2Cr2O7 + Na2SO4 + h3O Полученный дихромат восстанавливают серой: Na2Cr2O7 + 3S = Na2S + Cr2O3 + 2SO2, Образующийся чистый оксид хрома(III) Cr2O3 подвергают алюминотермии: Cr2O3 + 2Al = Al2O3 + 2Cr. Также используют кремний: 2Cr2O3 + 3Si = 3SiO2 + 4Cr Для получения хрома высокой чистоты, технический хром электрохимически очищают от примесей. Физические и химические свойства В свободном виде — голубовато-белый металл с кубической объемно-центрированной решеткой, а = 0,28845 нм. При температуре 39°C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля). Температура плавления 1890°C, температура кипения 2680°C. Плотность 7,19 кг/дм3. Устойчив на воздухе. При 300°C сгорает с образованием зеленого оксида хрома (III) Cr2O3, обладающего амфотерными свойствами. Сплавляя Cr2O3 со щелочами получают хромиты: Cr2O3 + 2NaOH = 2NaCrO2 + h3O Непрокаленный оксид хрома (III) легко растворяется в щелочных растворах и в кислотах: Cr2O3 + 6НСl = 2CrСl3 + 3Н2О При термическом разложении карбонила хрома Cr(OH)6 получают красный основной оксид хрома(II) CrO. Коричневый или желтый гидроксид Cr(OН)2 со слабоосновными свойствами осаждается при добавлении щелочей к растворам солей хрома(II). При осторожном разложении оксида хрома(VI) CrO3 в гидротермальных условиях получают диоксид хрома(IV) CrO2, который является ферромагнетиком и обладает металлической проводимостью. При взаимодействии концентрированной серной кислоты с растворами дихроматов образуются красные или фиолетово-красные кристаллы оксида хрома(VI) CrO3. Типично кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовая h3CrO4, дихромовая h3Cr2O7 и другие. Известны галогениды, соответствующие разным степеням окисления хрома. Синтезированы дигалогениды хрома CrF2, CrCl2, CrBr2 и СrI2 и тригалогениды CrF3, CrCl3, CrBr3 и СrI3. Однако, в отличие от аналогичных соединений алюминия и железа, трихлорид CrCl3 и трибромид CrBr3 хрома нелетучи. Среди тетрагалогенидов хрома устойчив CrF4, тетрахлорид хрома CrCl4 существует только в парах. Известен гексафторид хрома CrF6. Получены и охарактеризованы оксигалогениды хрома CrO2F2 и CrO2Cl2. Синтезированы соединения хрома с бором (бориды Cr2B, CrB, Cr3B4, CrB2, CrB4 и Cr5B3), с углеродом (карбиды Cr23C6, Cr7C3 и Cr3C2), c кремнием (силициды Cr3Si, Cr5Si3 и CrSi) и азотом (нитриды CrN и Cr2N). В растворах наиболее устойчивы соединения хрома(III). В этой степени окисления хрому соответствуют как катионная форма, так и анионные формы, например, существующий в щелочной среде анион [Cr(OH)6]3-. При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI): 2Na3[Cr(OH)6] + 3h3O2 = 2Na2CrO4+ 2NaOH + 8h3O Cr (VI) отвечает ряд существующих только в водных растворах кислот: хромовая h3CrO4, дихромовая h3Cr2O7, трихромовая h4Cr3O10 и другие, которые образуют соли — хроматы, дихроматы, трихроматы и т. д. В зависимости от кислотности среды анионы этих кислот легко превращаются друг в друга. Например, при подкислении желтого раствора хромата калия K2CrO4 образуется оранжевый дихромат калия K2Cr2O7: 2K2CrO4 + 2НСl = K2Cr2O7 + 2КСl + Н2О Но если к оранжевому раствору K2Cr2O7 прилить раствор щелочи, как окраска вновь переходит в желтую т. к. снова образуется хромат калия K2CrO4: K2Cr2O7 + 2КОН = 2K2CrO4 + Н2О При добавлении к желтому раствору, содержащему хромат-ионы, раствора соли бария выпадает желтый осадок хромата бария BаCrO4: Bа2+ + CrO42- = BаCrO4Соединения хрома(III)— сильные окислители, например: K2Cr2O7 + 14 НСl = 2CrCl3+ 2KCl + 3Cl2 + 7h3O Применение Использование хрома основано на его жаропрочности, твердости и устойчивости к коррозии. Применяют для получения сплавов: нержавеющей стали, нихрома и др. Большое количество хрома идет на декоративные коррозионно-стойкие покрытия. Соединения хрома — огнеупорные материалы. Оксид хрома (III) — пигмент зеленой краски, также входит в состав абразивных материалов (паст ГОИ). Изменение окраски при восстановлении соединений хрома(VI) применяют для проведения экспресс-анализа на содержание алкоголя в выдыхаемом воздухе. Катион Cr3+ входит в состав хромкалиевых KCr(SO4)2·12h3O квасцов, использующихся при выделке кожи. Физиологическое действие Хром — один из биогенных элементов, постоянно входит в состав тканей растений и животных. У животных хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов. Снижение содержания хромма в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови. Металлический хром практически нетоксичен, но металлическая пыль хрома раздражает ткани легких. Соединения хрома(III) вызывают дерматиты. Соединения хрома(VI) приводят к разным заболеваниям человека, в том числе и онкологическим. ПДК хрома(VI) в атмосферном воздухе 0,0015 мг/м3.

dic.academic.ru

Хром | Химия свойства элементов

Общие сведения и методы получения

Хром (Сг) — твердый блестящий металл. Как самостоятельный элемент был впервые выделен в 1797 г. Вокеленом из минерала крокоит, кото­рый открыл академик Паллас при изучении сибирских минералов в 1765 г. Свое название хром получил от греческого «chromos», что оз­начает цвет, из-за различных цветов его соединений — от зеленого до красного.

Содержание в земной коре 0,035 % (по массе).

В свободном состоянии хром не встречается. Из многочисленных руд, содержащих хром, промышленное значение имеет только хромит FeO-Cr203, в котором содержится более 65 % Сг203 (по массе), ос­тальное FeO. Хром входит в состав многих минералов, в частности в состав крокоита РЬСг04; к другим минералам, содержащим хром, от­носятся финицит, менахлоит или феникохлоит ЗРЬО-2Ст203, березовит, трапакалит, магнохромит и др. Известна большая группа силикатных минералов, содержащих хром, который придает этим минералам ха­рактерную окраску. Хромит относится к классу изоморфных минералов кубической системы, известных под названием шпинелей, которые мож­но охарактеризовать общей формулой -ТО-У203, где X — ион двухва­лентного металла, У—ион трехвалентного металла. В промышленных хромовых рудах содержание С,г203 редко превышает 50 % (по массе). Феррохром с содержанием 65—70 % Сг, используемый в металлургии, получают прямым восстановлением хромовой руды с соотношением Cr:Fe=3:l. Хромит восстанавливают углеродом, причем для получе­ния феррохрома содержание оксида хрома в руде должно быть не ме­нее 48%. В процессе плавки протекает реакция: Fe0-Cr203+4C->--*-Fe + 2Cr + 4CO.

Хром технической чистоты получают алюминотермическим, силико-термическим, электролитическим и другими методами из оксида хрома, который получают из хромистого железняка. Из методов производства технически чистого металла, пригодного для дальнейшего рафинирова­ния, наиболее прост и экономически выгоден электролитический. Стои­мость электролитического хрома несколько выше, чем хрома, получае­мого другими методами, но примеси из него могут быть удалены наи­более легко. Из методов очистки электролитического хрома от примесей наиболее широкое применение получила обработка хрома в сухом очи­щенном водороде. В процессе рафинирования из металла удаляется главным образом кислород, несколько понижается содержание азота и других металлических н неметаллических примесей, особенно элемен­тов, имеющих высокое давление паров. Рафинирование электролитиче­ского хрома проводится длительным нагревом при 1300—1500 °С в ус­ловиях непрерывного притока водорода. Глубокую очистку хрома можно осуществлять также вакуумной дистилляцией с конденсацией Паров на холодной поверхности.

Наиболее чистый хром для лабораторных исследований получают иодидным методом. Этот процесс основан на образовании летучих

иодидов хрома (при 700—900 °С) и их диссоциации на нагретой по­верхности (при 1000—1100 °С). Металлический хром после иодидного рафинирования пластичен в литом состоянии (удлинение при растяже­нии 9—18%).

Физические свойства

Атомные характеристики. Атомный номер хрома 24, атомная масса 51,996 а. е. м., атомный объем 7,23*10-6 м3/моль. Атомный (металли­ческий) радиус хрома 0,128 нм, ковалентный 0,118 нм. Электронная конфигурация внешних оболочек 3d5 4s1. Электроотрицательность 1,6. Значения потенциалов ионизации J (эВ): 6,746; 16,49; 31. При атмо­сферном давлении хром обладает о. ц. к. решеткой, при комнатной температуре а=0,2884 нм. Энергия кристаллической решетки 337,5 мкДж/кмоль.

Химические свойства

 В. В соединениях хром проявляет степени окисления +2, +3, +6, реже +4, +5, +1.

При нормальной температуре хром химически устойчив; почти не окисляется на воздухе, даже в присутствии влаги. При нагреве окисление протекает только на поверхности. Некоторые кислоты, например кон­центрированная азотная, фосфорная, хлорноватая, хлорная, образуют иа хроме окисную пленку, приводя к его пассивации. В этом состоянии хром обладает исключительно высокой коррозионной стойкостью и на него не действуют разбавленные минеральные кислоты. Хром является электроотрицательным по отношению к наиболее практически важным металлам и сплавам, и если он с ними образует гальванопару, то ус­коряет их коррозию,

Электролитически осажденный хром содержит большое количество растворенного водорода — до ~5 % (ат.). В данной системе возможно образование СгН (1,9% Н), СгН2 (3,73% Н) или СгН3 (5,49% Н), которые обладают низкой термической стабильностью и легко разла­гаются при незначительном нагревании. Теплота растворения водорода в твердом хроме при 797—1097 °С составляет 105 кДж/моль Н2, теп­лота образования СгН2Д//обр = 15,900 кДж/моль, Растворимость кис­лорода в твердом хроме при 1347 °С составляет 0,03% и снижается при понижении температуры. Наиболее распространенным оксидом хрома является Сг203 (31,6 % О), представляющий собой тугоплавкое вещество зеленого цвета (зеленый хром), применяемое для приготов­ления клеевой и масляной красок. Высший оксид хрома Сг03 — темно-красные игольчатые кристаллы представляет собой хромовый ангид­рид, хорошо растворим в воде

Технологические свойства

Хром технической чистоты при комнатной температуре хрупок и при­обретает пластичность лишь при нагреве выше 200—225 "С Хром от­носится к группе хладноломких металлов, пластичность которых резко падает при снижении температуры.

Области применения

Хром широко применяется в металлургии, главным образом в качестве легирующей добавки к сталям различного назначения. Добавка до 3 °/о Сг к обычным углеродистым сталям значительно повышает их механические свойства. Стали с содержанием 5—6 % Сг отличаются повышенным сопротивлением коррозии. При содержании хрома более 10 % стали обладают высокой коррозионной стойкостью (нержавею­щие). Хром в качестве легирующей добавки входит также в состав

жаропрочных сплавов иа основе никеля и кобальта. Сплавов иа основе хрома не существует. Большое количество чистого хрома используется в гальванотехнике; хромирование является надежным средством борь­бы с коррозией. Хромовые покрытия, помимо высокой коррозионной стойкости, обладают также высоким сопротивлением истиранию.

Хром в виде соединений используется при производстве огнеупор­ных материалов и пигментов.

ibrain.kz

Хром — Мегаэнциклопедия Кирилла и Мефодия — статья

Природный хром состоит из смеси четырех стабильных нуклидов: 50Cr (содержание в смеси 4, 35%), 52Cr (83, 79%), 53Cr (9, 50%) и 54Cr (2, 36%). Конфигурация двух внешних электронных слоев 3s2р6d54s1. Степени окисления от 0 до +6, наиболее характерны +3 (самая устойчивая) и +6 (валентности III и VI).

Радиус нейтрального атома 0, 127 нм, радиус ионов (координационное число 6): Cr2+ 0, 073 нм, Cr3+ 0, 0615 нм, Cr4+ 0, 055 нм, Cr5+ 0, 049 нм и Cr6+0, 044 нм. Энергии последовательной ионизации 6, 766, 16, 49, 30, 96, 49, 1, 69, 3 и 90, 6 эВ. Сродство к электрону 1, 6 эВ. Электроотрицательность по Полингу 1, 66.В 1766 в окрестностях Екатеринбурга был обнаружен минерал, который получил название «сибирский красный свинец», PbCrO4. Современное название — крокоит. В 1797 французский химик Л. Н. Воклен выделил из него новый тугоплавкий металл (скорее всего Воклен получил карбид хрома).

Содержание в земной коре 0, 035 % по массе. В морской воде содержание хрома 2·10-5 мг/л. В свободном виде хром практически не встречается. Входит в состав более 40 различных минералов (хромит FeCr2O4, волконскоит, уваровит, вокеленит и др.). Некоторые метеориты содержат сульфидные соединения хрома.

Промышленным сырьем при производстве хрома и сплавов на его основе служит хромит. Восстановительной плвкой хромита с коксом (восстановителем), железной рудой и другими компонентами получают феррохром с содержанием хрома до 80% (по массе).

Для получения чистого металлического хрома хромит с содой и известняком обжигают в печах:

2Cr2O3 + 2Na2CO3+ 3O2 = 4Na2CrO4 + 4CO2Образующийся хромат натрия Na2CrO4 выщелачивают водой, раствор фильтруют, упаривают и обрабатывают кислотой. При этом хромат Na2CrO4 переходит в дихромат Na2Cr2O7:

2Na2CrO4 + h3SO4 = Na2Cr2O7 + Na2SO4 + h3O

Полученный дихромат восстанавливают серой:

Na2Cr2O7 + 3S = Na2S + Cr2O3 + 2SO2,

Образующийся чистый оксид хрома(III) Cr2O3 подвергают алюминотермии:

Cr2O3 + 2Al = Al2O3 + 2Cr.

Также используют кремний:

2Cr2O3 + 3Si = 3SiO2 + 4Cr

Для получения хрома высокой чистоты, технический хром электрохимически очищают от примесей.

В свободном виде — голубовато-белый металл с кубической объемно-центрированной решеткой, а = 0, 28845 нм. При температуре 39°C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля). Температура плавления 1890°C, температура кипения 2680°C. Плотность 7, 19 кг/дм3.

Устойчив на воздухе. При 300°C сгорает с образованием зеленого оксида хрома (III) Cr2O3, обладающего амфотерными свойствами. Сплавляя Cr2O3 со щелочами получают хромиты:

Cr2O3 + 2NaOH = 2NaCrO2 + h3O

Непрокаленный оксид хрома (III) легко растворяется в щелочных растворах и в кислотах:

Cr2O3 + 6НСl = 2CrСl3 + 3Н2О

При термическом разложении карбонила хрома Cr(OH)6 получают красный основной оксид хрома(II) CrO. Коричневый или желтый гидроксид Cr(OН)2 со слабоосновными свойствами осаждается при добавлении щелочей к растворам солей хрома(II).

При осторожном разложении оксида хрома(VI) CrO3 в гидротермальных условиях получают диоксид хрома(IV) CrO2, который является ферромагнетиком и обладает металлической проводимостью.

При взаимодействии концентрированной серной кислоты с растворами дихроматов образуются красные или фиолетово-красные кристаллы оксида хрома(VI) CrO3. Типично кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовая h3CrO4, дихромовая h3Cr2O7 и другие.

Известны галогениды, соответствующие разным степеням окисления хрома. Синтезированы дигалогениды хрома CrF2, CrCl2, CrBr2 и СrI2 и тригалогениды CrF3, CrCl3, CrBr3 и СrI3. Однако, в отличие от аналогичных соединений алюминия и железа, трихлорид CrCl3 и трибромид CrBr3 хрома нелетучи.

Среди тетрагалогенидов хрома устойчив CrF4, тетрахлорид хрома CrCl4 существует только в парах. Известен гексафторид хрома CrF6.

Получены и охарактеризованы оксигалогениды хрома CrO2F2 и CrO2Cl2.

Синтезированы соединения хрома с бором (бориды Cr2B, CrB, Cr3B4, CrB2, CrB4 и Cr5B3), с углеродом (карбиды Cr23C6, Cr7C3 и Cr3C2), c кремнием (силициды Cr3Si, Cr5Si3 и CrSi) и азотом (нитриды CrN и Cr2N).

В растворах наиболее устойчивы соединения хрома(III). В этой степени окисления хрому соответствуют как катионная форма, так и анионные формы, например, существующий в щелочной среде анион [Cr(OH)6]3-.

При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):

2Na3[Cr(OH)6] + 3h3O2 = 2Na2CrO4+ 2NaOH + 8h3O

Cr (VI) отвечает ряд существующих только в водных растворах кислот: хромовая h3CrO4, дихромовая h3Cr2O7, трихромовая h4Cr3O10 и другие, которые образуют соли — хроматы, дихроматы, трихроматы и т. д.

В зависимости от кислотности среды анионы этих кислот легко превращаются друг в друга. Например, при подкислении желтого раствора хромата калия K2CrO4 образуется оранжевый дихромат калия K2Cr2O7:

2K2CrO4 + 2НСl = K2Cr2O7 + 2КСl + Н2О

Но если к оранжевому раствору K2Cr2O7 прилить раствор щелочи, как окраска вновь переходит в желтую т. к. снова образуется хромат калия K2CrO4:

K2Cr2O7 + 2КОН = 2K2CrO4 + Н2О

При добавлении к желтому раствору, содержащему хромат-ионы, раствора соли бария выпадает желтый осадок хромата бария BаCrO4:

Bа2+ + CrO42- = BаCrO4

Соединения хрома(III)— сильные окислители, например:

K2Cr2O7 + 14 НСl = 2CrCl3+ 2KCl + 3Cl2 + 7h3O

Использование хрома основано на его жаропрочности, твердости и устойчивости к коррозии. Применяют для получения сплавов: нержавеющей стали, нихрома и др. Большое количество хрома идет на декоративные коррозионно-стойкие покрытия. Соединения хрома — огнеупорные материалы. Оксид хрома (III) — пигмент зеленой краски, также входит в состав абразивных материалов (паст ГОИ). Изменение окраски при восстановлении соединений хрома(VI) применяют для проведения экспресс-анализа на содержание алкоголя в выдыхаемом воздухе.

Катион Cr3+ входит в состав хромкалиевых KCr(SO4)2·12h3O квасцов, использующихся при выделке кожи.

Хром — один из биогенных элементов, постоянно входит в состав тканей растений и животных. У животных хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов. Снижение содержания хромма в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови.

Металлический хром практически нетоксичен, но металлическая пыль хрома раздражает ткани легких. Соединения хрома(III) вызывают дерматиты. Соединения хрома(VI) приводят к разным заболеваниям человека, в том числе и онкологическим. ПДК хрома(VI) в атмосферном воздухе 0, 0015 мг/м3.

  • Лаврухина А.К., Юкина Л.В. Аналитическая химия хрома. М., 1979.
  • Юшков В. В. Химия и экология 3d-элементов. - Екатеринбург: УрО РАН, 2004.
  • Хром Казахстана. - М.: Металлургия, 2001.
  • Хром. - М.: Медицина, 1990.

megabook.ru

Хром

Хром — элемент побочной подгруппы шестой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 24. Обозначается символом Cr (лат. Chromium).

История открытия хрома

Металл ХромЕще в 1766 году петербургский профессор химии И. Г. Леман описал новый минерал, найденный на Урале на Березовском руднике, в 15 километрах от Екатеринбурга (ныне Свердловск). Обрабатывая камень соляной кислотой, Леман получил изумрудно-зеленый раствор, а в образовавшемся белом осадке обнаружил свинец. Спустя несколько лет, в 1770 году, Березовские рудники описал академик П. С. Паллас. «Березовские копи, — писал он, — состоят из четырех рудников, которые разрабатываются с 1752 года. В них наряду с золотом добываются серебро и свинцовые руды, а также находят замечательный красный свинцовый минерал, который не был обнаружен больше ни в одном другом руднике России. Эта свинцовая руда бывает разного цвета (иногда похожего на цвет киновари), тяжелая и полупрозрачная... Иногда маленькие неправильные пирамидки этого минерала бывают вкраплены в кварц подобно маленьким рубинам. При размельчении в порошок она дает красивую желтую краску...». Минерал был назван «сибирским красным свинцом». Впоследствии за ним закрепилось название «крокоит».

Образец этого минерала был в конце XVIII века привезен Палласом в Париж. Крокоитом заинтересовался известный французский химик Луи Никола Воклен. В 1796 году он подверг минерал химическому анализу. «Все образцы этого вещества, которые имеются в нескольких минералогических кабинетах Европы, — писал Воклен в своем отчете, — были получены из этого (т. е. Березовского.—С. В.) золотого рудника. Раньше рудник был очень богат этим минералом, однако говорят, что несколько лет назад запасы минерала в руднике истощились и теперь этот минерал покупают на вес золота, в особенности если он желтый. Образцы минерала, не имеющие правильных очертаний или расколотые на кусочки, годятся для использования их в живописи, где они ценятся за свою желто-оранжевую окраску, не изменяющуюся на воздухе... Красивый красный цвет, прозрачность и кристаллическая форма сибирского красного минерала заставила минералогов заинтересоваться его природой и местом, где он был найден; большой удельный вес и сопутствующая ему свинцовая руда, естественно, заставляли предполагать о наличии свинца в этом минерале...»

В 1797 году Воклен повторил анализ. Растертый в порошок крокоит он поместил в раствор углекислого калия и прокипятил. В результате опыта ученый получил углекислый свинец и желтый раствор, в котором содержалась калиевая соль неизвестной тогда кислоты. При добавлении к раствору ртутной соли образовывался красный осадок, после реакции со свинцовой солью появлялся желтый осадок, а введение хлористого олова окрашивало раствор в зеленый цвет. После осаждения соляной кислотой свинца Воклен выпарил фильтрат, а выделившиеся красные кристаллы (это был хромовый ангидрид) смешал с углем, поместил в графитовый тигель и нагрел до высокой температуры. Когда опыт был закончен, ученый обнаружил в тигле множество серых сросшихся металлических иголок, весивших в 3 раза меньше, чем исходное вещество. Так впервые был выделен новый элемент. Один из друзей Воклена предложил ему назвать элемент хромом (по-гречески «хрома» — окраска) из-за яркого разнообразного цвета его соединений. Между прочим, слог «хром» в значении «окрашенный» входит во многие термины, не связанные с элементом хромом: слово «хромосома», например, в переводе с греческого означает «тело, которое окрашивается»; для получения цветного, изображения пользуются прибором хромоскопом; фотолюбителям хорошо известны пленки «изопанхром», «панхром», «ортохром»; яркие образования в атмосфере Солнца астрофизики называют хромосферными вспышками и т. д.

Сначала Воклену не понравилось предложенное название, поскольку открытый им металл имел скромную серую окраску и как будто не оправдывал своего имени. Но друзья все же сумели уговорить Воклена и, после того как французская Академия наук по всей форме зарегистрировала его открытие, химики всего мира внесли слово «хром» в списки известных науке элементов.

Геохимия и минералогия хрома

Среднее содержание хрома в различных изверженных породах резко непостоянно. В ультраосновных породах (перидотитах) оно достигает 2 кг/т, в основных породах (базальтах и др.) — 200 г/т, а в гранитах десятки г/т. Кларк хрома в земной коре 83 г/т. Он является типичным литофильным элементом и почти весь заключен в минералах типа хромшпинелидов. Хром вместе с железом, титаном, никелем, ванадием и марганцем составляют одно геохимическое семейство.

Различают три основных минерала хрома: магнохромит (Mn, Fe)Cr2O4, хромпикотит (Mg, Fe)(Cr, Al)2O4 и алюмохромит (Fe, Mg)(Cr, Al)2O4. По внешнему виду они неразличимы и их неточно называют «хромиты». Состав их изменчив:

  • Cr2O3 18—62 %,
  • FeO 1—18 %,
  • MgO 5—16 %,
  • Al2O3 0,2 — 0,4 (до 33 %),
  • Fe2O3 2 — 30 %,
  • примеси TiO2 до 2 %,
  • V2O5 до 0,2 %,
  • ZnO до 5 %,
  • MnO до 1 %; присутствуют также Co, Ni и др.

Собственно хромит, то есть FeCr2O4 сравнительно редок. Помимо различных хромитов, хром входит в состав ряда других минералов — хромовой слюды (фуксита), хромового хлорита, хромвезувиана, хромдиопсида, хромтурмалина, хромового граната (уваровита) и др., которые нередко сопровождают руды, но сами промышленного значения не имеют. В экзогенных условиях хром, как и железо, мигрирует в виде взвесей и может накапливаться в глинах. Наиболее подвижной формой являются хроматы.

Добыча хрома в России и мире

Разведанные запасы в Казахстане составляют свыше 350 млн т (или 1 место в мире).

В России ведется разработка как разведанных запасов (категорий АВС1), так и предварительно оцененных (категории С2) и даже забалансовых; в 2007 г. из них было добыто соответственно 381 тыс.т, 194 тыс.т и 20 тыс.т руды. Вследствие этого разведанные запасы хромитов страны уменьшились на 3,1%, в то время как предварительно оцененные запасы в результате постановки на баланс месторождения Шалозерское увеличились на 3,9%. В целом балансовые запасы хромовых руд России увеличились на 718 тыс.т, или на 1,4%.

Запасы хрома в России и мире

В 1936 году в Казахстане, в районе Актюбинска, были найдены огромные залежи хромита — основного промышленного сырья для производства феррохрома. В годы войны на базе этого месторождения был построен Актюбинский ферросплавный завод, который впоследствии стал крупнейшим предприятием по выпуску феррохрома и хрома всех марок.

Богат хромистой рудой и Урал. Здесь расположено большое число месторождений этого металла: Сарановское, Верблюжьегорское, Алапаевское, Монетная дача, Халиловское и др. По разведанным запасам хромистых руд Россия занимает ведущее место в мире.

Состояние МСБ хромовых руд Российской Федерации на 1.01.2008 г.

Прогнозные ресурсы

Р1

Р2

Р3

количество*, млн т

165

259

199

доля распределённого фонда, %

78

54

40

Запасы

АВС1

С2

количество, тыс.т

17714

34732

изменение по отношению к запасам на 1.01.2007 г., тыс.т

- 573

1291

доля распределённого фонда, %

98,98

99,95

*экспертная оценка

Государственным балансом учитывается 24 месторождения хромовых руд, из них пять – только с забалансовыми запасами. В 2007 г. впервые учтены Шалозерское месторождение в Республике Карелия и месторождение с забалансовыми запасами Вершина реки Алапаихи в Свердловской области. В распределённом фонде недр РФ находится 17 месторождений, в нераспределенном – в основном мелкие объекты, хотя их руды по качеству сопоставимы с рудами месторождений распределённого фонда.

Руды хрома имеются в Турции, Индии, Новой Каледонии, на Кубе, в Греции, Югославии, некоторых странах Африки. В то же время такие промышленные страны, как Англия, Франция, ФРГ, Италия, Швеция, Норвегия, совершенно лишены хромового сырья, а США и Канада располагают лишь очень бедными рудами, практически не пригодными для производства феррохрома. Всего же на долю хрома приходится 0,02% земной коры.

Получение хрома

Хром встречается в природе в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом):

FeO · Cr2O3 + 4C → Fe + 2Cr + 4CO↑

Феррохром применяют для производства легированных сталей.

Чтобы получить чистый хром, реакцию ведут следующим образом:

1) сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе:

4Fe(CrO2)2 + 8Na2CO3 + 7O2 → 8Na2CrO4 + 2Fe2O3 + 8CO2↑

2) растворяют хромат натрия и отделяют его от оксида железа;

3) переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат;

4) получают чистый оксид хрома восстановлением дихромата углём:

Na2Cr2O7 + 2C → Cr2O3 + Na2CO3 + CO↑

5) с помощью алюминотермии получают металлический хром:

Cr2O3+ 2Al → Al2O3 + 2Cr + 130 ккал

6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты. При этом на катодах совершаются в основном 3 процесса:

  • восстановление шестивалентного хрома до трехвалентного с переходом его в раствор;
  • разряд ионов водорода с выделением газообразного водорода;
  • разряд ионов, содержащих шестивалентный хром, с осаждением металлического хрома;

Cr2O72− + 14Н+ + 12е− = 2Cr + 7h3O

Физические свойства хрома

Хром обладает всеми характерными свойствами металлов — хорошо проводит тепло, почти не оказывает сопротивления электрическому току, имеет присущий большинству металлов блеск. Любопытна одна особенность хрома: при температуре около 37°С он ведет себя явно «вызывающе» — многие его физические свойства резко, скачкообразно меняются. В этой температурной точке внутреннее трение хрома достигает максимума, а модуль упругости падает до минимальных значений. Так же внезапно изменяются электропроводность, коэффициент линейного расширения, термоэлектродвижущая сила. Пока ученые не могут объяснить эту аномалию.

В свободном виде — голубовато-белый металл с кубической объемно-центрированной решеткой, а = 0,28845 нм. При температуре 39 °C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля).

Хром (с примесями) является самым твердым металлом (твердость по шкале Мооса 8.5). Очень чистый хром достаточно хорошо поддаётся механической обработке.

Даже незначительные примеси делают хром очень хрупким, поэтому в качестве конструкционного материала его практически не применяют.

Химические свойства хрома

Устойчив на воздухе. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr2O3, обладающего амфотерными свойствами. Сплавляя Cr2O3 со щелочами получают хромиты:

Cr2O3 + 2NaOH → 2NaCrO2 + h3O.

Непрокаленный оксид хрома(III) легко растворяется в щелочных растворах и в кислотах:

Cr2O3 + 6HCl → 2CrCl3 + 3Н2О.

При термическом разложении карбонила хрома Cr(СО)6 получают красный основной оксид хрома(II) CrO. Коричневый или желтый гидроксид Cr(OH)2 со слабоосновными свойствами осаждается при добавлении щелочей к растворам солей хрома(II).

При осторожном разложении оксида хрома(VI) CrO3 в гидротермальных условиях получают оксид хрома(IV) CrO2, который является ферромагнетиком и обладает металлической проводимостью.

При взаимодействии концентрированной серной кислоты с растворами дихроматов образуются красные или фиолетово-красные кристаллы оксида хрома(VI) CrO3. Типичный кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовую h3CrO4, дихромовую h3Cr2O7 и другие изополикислоты с общей формулой h3CrnO3n+1. Увеличение степени полимеризации происходит с уменьшением рН, то есть увеличением кислотности:

2K2CrO4 + 2h3SO4 → K2Cr2O7 + 2K2SO4 + Н2О.

Но если к оранжевому раствору K2Cr2O7 прилить раствор щёлочи, как окраска вновь переходит в жёлтую так как снова образуется хромат калия K2CrO4:

K2Cr2O7 + 2KOH → 2K2CrO4 + Н2О.

При этом до высокой степени полимеризации, как это происходит у вольфрама и молибдена, не доходит, так как полихромовая кислота распадается на оксид хрома(VI) и воду:

h3CrnO3n+1 → h3О + nCrO3

Известны галогениды, соответствующие разным степеням окисления хрома. Синтезированы дигалогениды хрома CrF2, CrCl2, CrBr2 и CrI2 и тригалогениды CrF3, CrCl3, CrBr3 и CrI3. Однако, в отличие от аналогичных соединений алюминия и железа, трихлорид CrCl3 и трибромид CrBr3 хрома нелетучи.

Среди тетрагалогенидов хрома устойчив CrF4, тетрахлорид хрома CrCl4 существует только в парах. Известен гексафторид хрома CrF6.

Получены и охарактеризованы оксигалогениды хрома CrO2F2 и CrO2Cl2.

Синтезированы соединения хрома с бором (бориды Cr2B, CrB, Cr3B4, CrB2, CrB4 и Cr5B3), с углеродом (карбиды Cr23C6, Cr7C3 и Cr3C2), c кремнием (силициды Cr3Si, Cr5Si3 и CrSi) и азотом (нитриды CrN и Cr2N).

В растворах наиболее устойчивы соединения хрома(III). В этой степени окисления хрому соответствуют как катионная форма, так и анионные формы, например, существующий в щелочной среде анион [Cr(OH)6]3−.

При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):

2Na3[Cr(OH)6] + 3h3O2 → 2Na2CrO4 + 2NaOH + 8h3O.

При добавлении к жёлтому раствору, содержащему хромат-ионы, раствора соли бария выпадает жёлтый осадок хромата бария BaCrO4:

Ba2+ + CrO42- → BaCrO4.

Соединения хрома(VI) — сильные окислители, например:

K2Cr2O7 + 14HCl → 2CrCl3 + 2KCl + 3Cl2↑ + 7h3O.

Применение хрома

«Нержавейка»—сталь, отлично противостоящая коррозии и окислению, содержит примерно 17—19% хрома и 8—13% никеля. Но этой стали углерод вреден: карбидообразующие «наклонности» хрома приводят к тому, что большие количества этого элемента связываются в карбиды, выделяющиеся на границах зерен стали, а сами зерна оказываются бедны хромом и не могут стойко обороняться против натиска кислот и кислорода. Поэтому содержание углерода в нержавеющей стали должно быть минимальным (не более 0,1%).

Феррохром и ферросплавы

Основная часть добываемой в мире хромистой руды поступает сегодня на ферросплавные заводы, где выплавляются различные сорта феррохрома и металлического хрома.

Впервые феррохром был получен в 1820 году восстановлением смеси окислов железа и хрома древесным углем в тигле. В 1854 году удалось получить чистый металлический хром электролизом водных растворов хлорида хрома. К этому же времени относятся и первые попытки выплавить углеродистый феррохром в доменной печи. В 1865 году был выдан первый патент на хромистую сталь. Потребность в феррохроме начала резко расти.

Важную роль в развитии производства феррохрома сыграл электрический ток, точнее электротермический способ получения металлов и сплавов. В 1893 году французский ученый Муассан выплавил в электропечи углеродистый феррохром, содержащий 60% хрома и 6% углерода.

В дореволюционной России ферросплавное производство развивалось черепашьими темпами. Мизерные количества ферросилиция и ферромарганца выплавляли доменные печи южных заводов. В 1910 году на берегу реки Сатки (Южный Урал) был построен маленький электрометаллургический завод «Пороги», который стал производить феррохром, а затем и ферросилиций. Но об удовлетворении нужд своей промышленности не могло быть и речи: потребность России в ферросплавах приходилось почти полностью покрывать ввозом их из других стран.

Молодое Советское государство не могло зависеть от капиталистических стран в такой важнейшей отрасли промышленности, как производство качественных сталей, являющейся основным потребителем ферросплавов. Чтобы воплотить в жизнь грандиозные планы индустриализации нашей страны, требовалась сталь—конструкционная, инструментальная, нержавеющая, шарикоподшипниковая, автотракторная. Один из важнейших компонентов этих сталей — хром.

Уже в 1927—1928 годах началось проектирование и строительство ферросплавных заводов. В 1931 году вошел в строй Челябинский завод ферросплавов, ставший первенцем нашей ферросплавной промышленности.

В то время наша хромистая руда вывозилась не только в Германию, но и в Швецию, Италию, США. И у них же нам приходилось покупать феррохром.

Но когда вслед за Челябинским в 1933 году были построены еще два ферросплавных завода—в Запорожье и Зестафони, наша страна не только прекратила ввозить важнейшие ферросплавы, в том числе и феррохром, но и получила возможность экспортировать их за границу. Качественная металлургия страны была практически полностью обеспечена необходимыми материалами отечественного производства.

www.protown.ru


Смотрите также