• Главная

Справочник химика 21. Хром никель


Покрытия, коррозия хром-никелевые - Справочник химика 21

    При нахождении никеля в коррозионной среде происходит быстрое потускнение поверхности и по ней распространяется общая коррозия. Простые никелевые покрытия довольно эффективны для защиты стали в инженерных конструкциях, внешний вид которых имеет второстепенное значение. Сопротивляемость действию кислот у никеля исключительно хорошая. На декоративных никелевых покрытиях быстрое потускнение нежелательно. Для того чтобы сохранить внешнюю привлекательность, на защитные никелевые покрытия обычно наносят декоративный блестящий слой хрома. При этой сложной схеме [c.117]     Хром применяется для электролитического покрытия — хромирования, в качестве добавок к сталям для придания им жаростойкости, кислотоупорности и для получения нержавеющих сталей. Покрытие металлов хромом толщиной всего 0,005 мм уже является хорошей защитой их от коррозии. Хромовые покрытия отличаются антикоррозионными свойствами, твердостью и хорошим декоративным видом. Б качестве добавки при изготовлении высококачественных сталей часто применяется феррохром (сплав Ре с Сг, содержащий последний в достаточно высокой концентрации). При изготовлении различного механического оборудования широко используют хромо-никелевую сталь марки 18-8, содержащую 18% хрома. Хорошо зарекомендовала себя также хромистая сталь Х-30, содержащая 30% Сг. [c.382]

    Медные, никелевые и хромовые покрытия предназначены главным образом для защитно-декоративной отделки изделий, когда одновременно с защитой от коррозии необходимо улучшить их внешний вид. Типичными защитно-декоративными покрытиями являются многослойные покрытия никель — хром, медь — никель и медь — никель — хром. [c.159]

    В последние годы стали широко применять для защитно-декоративных целей микропористое хромирование [29]. Микропористое хромовое покрытие осуществляется путем осаждения между блестящим никелем и хромом специального промежуточного слоя никеля, содержащего токонепроводящие микрочастицы. При электролитическом покрытии такого слоя хромом из стандартных электролитов хромирования на микрочастицах хромовое покрытие не осаждается и образуется микропористая хромовая пленка (сетка). Микропористые хромовые покрытия обычно имеют толщину 0,2— 0,3 мкм и содержат от сотен тысяч до миллиона и более микропор на 1 см поверхности. Благодаря множеству пор в хромовом покрытии коррозия нижележащего слоя никеля в образующихся при этом микрогальванических элементах (никель — анод, хром — катод) протекает равномерно по всей поверхности и таким образом проникновение ее вглубь замедляется. Коррозионная стойкость покрытий медь — никель — хром при сочетании микропористого хромирования с двух- и трехслойным никелированием повышается от 8 до 12 раз при сравнении с однослойным никелевым покрытием той же толщины. [c.190]

    Этот слой разделяет полублестящий и блестящие слои никеля, его толщина составляет 1—2 мкм. В результате повышенного содержания серы средний слой никеля в контакте с агрессивной средой (в порах покрытия) приобретает отрицательный потенциал по отношению как к нижнему, так и к верхнему слою, сильно замедляя коррозию обоих слоев (см. рис. 3.15). При этом коррозия в порах промежуточного слоя, служащего активным анодом, распространяется горизонтально вдоль границы блестящего и полублестящего слоев. Таким покрытием являются, по существу, любые покрытия никеля, содержащие 0,1% серы в них содержится большое число токонепроводящих частичек (в основном каолина), размер которых составляет 0,01— 0,02 мкм. Сил-никель применяют как последний слой перед нанесением хрома в защитно-декоративном покрытии. Вследствие наличия в никелевом покрытии большого числа токонепроводящих включений в слое хрома образуется множество мелких пор — от 20 000 до 50 000 на 1 см , т. е. микропористый хром. В таком покрытии коррозия нижележащего слоя никеля, как анода в образующихся коррозионных микроэлементах, протекает равномерно по всей поверхности и, таким образом, проникновение ее вглубь замедляется. Толщина слоя сил-никель составляет 1—2 мкм. [c.273]

    Коррозионная стойкость блестящих никелевых покрытий и покрытий никель—хром оказалась значительно ниже, чем матовых осадков никеля. Блестящий никель уступает матовому и по склонности к пассивированию. Таким образом, несмотря на то, что блестящие осадки никеля менее пористы, чем матовые, блестящий никель менее устойчив к действию коррозии. [c.217]

    Защита металлов от газовой коррозии может быть достигнута различными способами защитные покрытия, уменьщение агрессивности газовой среды и др. Наиболее эффективным способом защиты от окисления при высоких температурах является жаростойкое легирование, т. е. введение в состав сплава компонентов, повышающих его жаростойкость. Основными элементами, способствующими созданию защитного слоя на обычных железоуглеродистых, никелевых и других сплавах, являются хром, алюминий и кремний. Эти элементы окисляются при высоких температурах на воздухе легче, чем легируемый металл, и образуют хорошую защитную окалину. [c.146]

    К подготовке поверхности формы можно отнести нанесение на поверхность из алюминиевых и цинковых сплавов меди из цианистого электролита, на поверхность медных форм — никеля, на поверхность медных, никелевых и стальных форм — хрома. Эти операции проводят с различными целями на сплавы алюминия и цинка осаждают металлические покрытия для защиты их от коррозии и упрочнения поверхности никель и хром наносят для создания естественного разделительного слоя, гарантирующего отделение копии от формы. [c.35]

    Никелирование — создание никелевого покрытия на поверхности другого металла с целью предохранения его от коррозии. Проводится гальваническим способом с нссульфат никеля (И), хлорид натрня, гидроксид бора, поверхностно-активные и глянцующие вещества, и растворимых никелевых анодов. Толщина получаемого никелевого елоя составляет 12—36 мкм. Устойчивость блеска поверхности может быть обеспечена последующим хромированием (толщина слоя хрома 0,3 мкм). [c.437]

    Нанесение металлических покрытий обычно преследует не только практические (защита от коррозии), но и эстетические цели. Это обусловливает соответствующие требования. Так как ни один металл не отвечает полностью какой-либо группе требований, то в большинстве случаев пленочные покрытия изготавливаются из двух (а возможно и более) различных металлов. Например, умело изготовленное на железе никелевое покрытие не имеет пор, обеспечивает хорошую защиту, но на поверхности быстро окисляется и тускнеет. Хромовое покрытие, наоборот, остается блестящим и красивым, однако из-за наличия пор плохо защищает основной металл. Поэтому обычно железный предмет покрывают сначала относительно толстой никелевой пленкой, которая хорошо защищает от коррозии, а потом наносят тонкий слой хрома —он, несмотря на пористость, делает поверхность блестящей и красивой. Подобным образом тонким хромовым покрытием можно защитить серебро от почернения в атмосфере, содержащей серу (сера вызывает образование на поверхности сульфида серебра). [c.288]

    В случае, когда изделиям, помимо защиты от коррозии, необходимо придать красивый, нетускнеющий вид, их покрывают никелем, хромом, часто с промежуточным. меднением при этом пористость покрытия должна быть минимальной, т. к. в этом случае покрытие защищает основной металл не электрохимически, а путем изоляции его от окружающей среды. В машиностроении, приборостроении, авиации и др. отраслях пром-сти, начиная с 20 гг. 20 в., все большее распространение получает защитно-декоративное хромирование по схеме медь — никель — хром. Главные функции защиты основного металла от коррозии выполняют медные и никелевые покрытия, поверх к-рых наносится лишь очень тонкий слой хрома (порядка 1 мк), сохраняющий длительное время блеск изделий. При износостойком хромировании на стальные закаленные детали (реже на алюминиевые) наносят сравнительно толстый слой хрома (до 200 мк). В табл. 2 приведены данные о виде и толщине различных покрытий в зависимости от их назначения. [c.400]

    В практике широко развито никелирование железа с промежуточным подслоем меди. Иногда применяют комбинированное покрытие никель—медь из меднокислой ванны — никель. Лишь в некоторых случаях необходимо покрывать железо никелем без подслоев меди (например, таким способом никелируют хирургический инструмент, клише и стереотипы для полиграфического производства с целью получения повышенной поверхностной твердости). Для защиты никелевых покрытий от механических повреждений и сохранения декоративного вида на более длительный срок поверх никеля электролитически осаждают тонкий слой (1—1,5 мк) хрома. Для защиты от коррозии в атмосферных условиях суммарная толщина комбинированного покрытия при никелировании должна составлять 25—-30 мк, а для изделий, работающих в жестких условиях, 45 мк. Толщина наружного слоя никеля должна быть не менее 12—15 мк. [c.172]

    Пониженная коррозионная стойкость покрытия хром—никель объясняется электрохимической коррозией самого покрытия. Так как блестящий никель нестоек, скорость развития пор в никелевом покрытии (никель в сквозных порах и трещинах хрома), которое является анодом по отношению к хрому, достаточно велика. [c.217]

    Никель образует с хромом гальваническую коррозионную пару, в которой хром является катодом, а никель — анодом. В декоративных хромовых покрытиях, получаемых традиционным методом, имеются трещины, достигающие никелевой подложки. В результате этого образуется система с большой поверхностью катода и малой поверхностью анода. Коррозия действует самым активн м образом в местах больших поверхностных дефектов, приводя к местному разрушению никеля вплоть до поверхности медного подслоя и далее до стальной подложки. [c.91]

    Не установлено положительного влияния более толстых покрытий меди в качестве частичной замены никеля, что разрещено большинством стандартов по никелевым покрытиям. Согласно работам Блюма и Хога-бума [18], защитный эффект никелевого покрытия на стали уменьшается из-за присутствия медного покрытия, однако этого не происходит, если никель покрыт сверху хромом. Такое поведение в значительной степени подтверждается более современными коррозионными испытаниями [17, 19], и отрицательный эффект в отсутствие хрома, вероятно, возникает из-за воздействия на никель продуктов коррозии меди. Однако в результате проверки на многих тысячах хромированных деталей двигателей не установлено различия в поведении деталей, в которых никель составляет соответственно 95—100 и 50% в медноникелевом покрытии [c.433]

    Это обстоятельство привело -к разработке различных никельхромовых покрытий, в которых никелевые подслои осаждаются в несколько стадий и имеют дифференцированные свойства. Одним из таких покрытий является двухслойное никелевое, для получения которого требуется, чтобы в нижнем слое ие было сернистых включений. При наличии двух слоев никеля с неодинаковой электрохимической активностью в верхнем слое возникает коррозия. Обычно коррозия начинается с пор хрома и проникает в глубь осадка до второго слоя никеля. [c.97]

    Покрытие никель—хром с микротрещинами получают следующим образом. На слой блестящего никелевого покрытия толщиной 20. .. 25 мкм осаждают слой матового никеля толщиной 2. .. 2,5 мкм из раствора, г/л сульфата никеля 240. .. 250, хлорида никеля 40. .. 50, борной кислоты 40. .. 50, триметиламинобората 1. .. 2 при pH = = 3. .. 4 температуре 50. .. 60 °С и плотности тока 4. .. 5 А/дм , а затем слой хрома толщиной 0,5. .. 1 мкм из универсального раствора с добавкой 0,005. .. 0,01 г/л селената натрия. Двухслойные покрытия никель—хром рекомендуются для защиты от коррозии деталей сложной конфигурации в машиностроении. [c.689]

    В атмосферных условиях никелевое и хромовое покрытия защищают алюминиевые сплавы лучше, чем анодирование. Так, при толщине покрытия 50 мк никель и хром удовлетворительно защищают алюминий от атмосферной коррозии в течение 16 месяцев. Еще лучшими защитными характеристиками обладает двухслойное покрытие никель—хром. Подслой меди не улучщает защитные свойства хромового покрытия. Кадмиевое покрытие используют для защиты алюминия и его сплавов от контактной коррозии. Серебряное, медное, оловянное покрытия применяют для защиты от окисления алюминиевых электрических контактов. Серебряное и родиевое покрытия используют для защиты от коррозии алюминиевых волноводов [210]. [c.106]

    Никель чувствителен к агрессивным воздействиям, особенно в промышленной атмосфере. Из-за потускнения металла ве дедст-вие образования пленки основного сульфата никеля, уменьшающего зеркальный блеск поверхности, покрытия постепенно теряют отражательную способность [4]. Для того чтобы уменьшить потускнение, на никель электроосаждением наносят очень тонкий (0,0003—0,0008 мм) слой хрома. Отсюда возник термин хромовое покрытие , хотя в действительности оно в основном состоит из никеля. Оптимальные условия защиты достигаются, если в покровном хромовом слое образуются микротрещины. Чтобы получить этот эффект, в гальванически,е ванны для электроосаждения хрома вводят соответствующие добавки. Тонкий никелевый слой, осажденный из электролита, содержащего блескообразователи (обычно соединения серы), в свою очередь наносится на вдвое или втрое более толстый матовый слой, электроосажденный из обычной ванны никелирования. Многочисленные трещины в хроме способствуют инициации коррозии во многих местах поверхности, что уменьшает в конечном итоге глубину коррозионных разрушений, которые в противном случае протекали бы в нескольких отдельных точках. Блестянщй никель, содержащий небольшие количества серы, является анодом по отношению к нижнему слою никеля, в котором серы меньше, и поэтому выступает в качестве протекторного покрытия. Развитие любого питтинга, образующегося под хромовым покрытием, происходит в основном вширь, а не за счет роста в глубь никелевых слоев. Таким образом, предотвращается коррозия основного металла. Система многослойных покрытий обладает более высокой защитной способностью, чем однослойные хромовые или никелевые покрытия той же толщины [51. [c.234]

    Образующиеся покрытия содержат до 10% и более неметаллических частиц и приобретают в зависимости от состава частиц высокую антикоррозионную стойкость, твердость, термостойкость, смазывающие и другие новые свойства. Широкое применение получили композиционные покрытия никелем с последующим микропористым хромированием. Благодаря присутствию в промежуточном никелевом слое множества мелких токонепроводящих частиц слой осаждаемого на нем хрома имеет микропористую структуру (до 10 пор на 1 см ). При этом коррозия никеля, как анода в образующихся микрогальваноэлементах (никель/хром), протекает равномерно по всей поверхности и, таким образом, проникание ее вглубь замедляется, [c.353]

    Основным фактором повышенной коррозионной стойкости двухслойных никелевых покрытий является то, что коррозия начинается всегда в бтестящем (верхнем) содержащем серу слое комбинированного никелевого покрытия, который является анодом как по отношению к хрому, так и по отношению к полублестящему слою никеля. Коррозионный гроцесс, достиган пол блестящего слоя, задерживается, так как дачее он распростраииется в горизонтальной плоскости по границе двух слоев комбинированного никелевого покрытия Кроме того, двухслойные покрытия менее пористы, так как поры в разных слоях не совпадают [4, 28, 29]. [c.97]

    Толщина обычных декоративных электроосаждаемых осадков обычно составляет около 0,3 мкм. Если эти осадки используются с подслоями никеля соответствующей толщины и качества, то основной металл (сталь, цинковые сплавы или медь) можно полностью защитить от внешнего воздействия на протяжении от шести недель до шести месяцев. После образования маленьких язв или пузырей, содержащих продукты коррозии основного металла, декоративные внешние качества изделия теряются, хотя функциональные качества могут оставаться неизменными еще более длительный период времени. Можно немного улучшить качества за счет нанесения плотных молочных осадков (см. гл. 3), но в этом случае сопутствующим недостатком явится чрезмерная хрупкость. Если же использовать осадки хрома, имеющие микронесплошности (такие, как микротрещины или микропоры) при толщине покрытия 0,3—1,0 мкм, создаваемого электроосаждением (см. гл. 3), то снижение плотности локального анодного тока замедлит проникающую коррозию в защитных подслоях никелевого покрытия, и срок службы полностью сохраненной декоративной поверхности может составить от одного года до пяти лет. Даже по истечении этого времени потеря внешнего вида часто связана не с коррозией основного металла, а с мельчайшим отслаиванием хрома от никеля в результате поверхностной коррозии никеля, вследствие чего поверхность хрома становится матовой. [c.112]

    В морских атмосферах скорость коррозии кобальта очень мала. На обоих испытательных стендах в Кюр-Бич (25 и 250 м от океана) коррозия происходила со скоростью от 2,5 до 5,1 мкм/год [46]. Электроосажден-ное кобальтовое покрытие может разрушаться быстрее, чем никелевое. Наличие продуктов коррозии кобальта придает поверхности красноватый оттенок. Сравнение свойств композиционных покрытий на стали, полученных электроосаждением хрома на нижний слой из кобальта, кобальтоникелевого сплава или никеля, показало, что во всех случаях достигается примерно одинаковая защита стали в морских атмосферах [47]. В целом кобальт можно отнести к металлам, стойким в морской атмосфере. Небольшая местная коррозия, как и в случае никеля, может происходить в результате образования коррозионных пар под солевыми и другими отложениями на поверхности. [c.91]

    Пов-еть изделий модифицируют путем нанесения тонких покрьггий из лр. металлов или сплавов, преим. для защиты от атм. коррозии. Состав н способ нанесения покрытий м.б. различными. На стальной прокат покрытия из Zn, Al и их сплавов чаще всего наносят методом напыления металл покрыгня в виде проволоки или порошка плавится в элеггрич, дуге или пламени, распыляется газовой струей и осажлается на подготовленную пов-сть. Хорошей адгезией и равномерной толщиной отличаются покрытия, образуемые окунанием защищаемых изделий в ванну расплавленного Zn или А1. Электрохим, методы нанесения широко используют в тех случаях, когда необходимо покрытие очень малой и контролируемой толщины, а изделие не должно сильно нагреваться. Так наносят Сг, Ni, Sn, Zn, d и др. (см. Гальванотехника). Хромовые покрытия декоративны и благодаря высокой способности хрома пассивироваться могут обладать высокой защитной способностью, но, как правило, содержат трещины и потому чаще нх наносят поверх никелевых покрытий. [c.165]

    При нанесении декоративных хромовых покрытий на деталь для защиты от коррозии сначала наносят слой никеля. Для получения гладкой и блестящей поверхности, необходимой для хромирования, наносят еще один или несколько слоев никеля. Этот процесс проводят в так называемых полировальных ваннах, наполнен гых водным раствором никелевых солей, содержащих полирующие добавки — сераорга-нические соединения. После нанесения слоев никеля деталь промывают водой для удаления никелирующего раствора и проводят хромирование. В результате на полированный слой никеля наносится декоративный внешний слой хрома. [c.271]

    Так как никелевое покрытие в атмосферных условиях легко окисляется и тускнеет, его покрывают тонким слоем металлического хрома, который придает изделию стабильный блеск и хороший вид. Так осуществляется защита автомобильных деталей многослойным покрытием медь—никель—хром. Хромовый слой толщиной 0,3—1 мкм должен покрыться сетью микротрещин в сочетании с микропорами это увеличивает анодную поверхность никеля, и его коррозия имеет очень равномерный характер. Ми-кропоры на поверхности хромового покрытия образуются в специальных электролитах или при наличии подслоя блестящего никеля, содержащего включения, не проводящие ток (например, сульфат бария). На растрескавшемся хромовом покрытии образуется до 30—80 микротрещин на 1 мм это приводит к равномерному распределению плотности тока в коррозионном элементе хромовое пп1Р№ытие — никелевое покрытие . Такая технология позволяет уменьшить минимальную толщину никелевых покрытий на 25%, что дает значительную экономию дефицитного металла. [c.222]

    Если при толщине покрытия 1 мкм коррозионный ток всех микроэлементов, действующих на 1 см поверхности в неперемешиваемом электролите, составляет для системы железо — медь 34 мка, то для системы железо — хром он равен 12 мка. Объясняется это в основном тем, что хромовое покрытие является, как видно из рис. 48, малоэффективным катодом. Этим и, вероятно, длительным сохранением у неото-жженного хрома более отрицательного потенциала можно объяснить, почему хромовое покрытие, нанесенное непосредственно на железо, часто хорошо защищает его от коррозии. Никелевое покрытие по защитному действию занимает промежуточное положение, но оно ближе к медному. [c.108]

    Червяки для переработки поливинилхлоридных материалов часто хромируют, чтобы предохранить их от коррозии. Однако в вопросе о целесообразности этого имеются определенные расхождения. Обычно не считают правильным покрывать хромом поверхности, обрабатывающиеся под размер при дальнейших операциях. Надо учитывать также, что на углах у основания витка покрытие имеет склонность к шелушению и откалыванию. Поэтому в случаях, когда имеется опасность возникновения коррозии, желательно применять червяки из нержавеющей стали со специальными наплавками на витках. Например, червяки для переработки сополимеров поливинилхлорида, таких, как саран, о бычпо изготавливают из специальных никелевых сплавов. [c.111]

    Катодные покрытия состоят из металла более положительного, чем защищаемый. В порах, трещинах и на оголенных участках таких покрытий растворимым металлом, т. е. анодом, будет защищаемый, причем от искусственно созданных катодных, иногда очень положительных участков (например, мэдь по отношению к стали), защищаемый металл будет еще больше растворяться. Иногда можно наблюдать, что плохо никелированные стальные предметы во влажных условиях ржавеют скорее, чем совсем не никелированные (см. рис. 173 в). Задача сводится к тому, чтобы создавать по возможности беспористые покрытия. Последнее практически очень трудно, поэтому часто прибегают к методу нанесения многослойных покрытий (медь 4- никель никель + медь + никель + хром и т. п.). Если одно меднение или одно никелирование стали не предохраняют последню ю от коррозии атмосферной влагой, то, например, двухслойное покрытие (никель с медным подслоем) является действенным. Поры медного покрытия перекрываются слоем никеля, поры которого редко совпадают с медным (см. рис. 173 г) в порах никелевого слоя, заполненных электролитом, короткозамкнутый гальванический элемент (медь — раствор — никель) не работает потому, что при анодной поляризации никель пассивируется и не растворяется. [c.334]

    Достоинства никелевых покрытий — красивый внешний вид, способность принимать полировку, высокая стойкость против атмосфер ных влиянии и действия щелочей, малая растворимость в кислотах Недостатки — непригодность для защиты от коррозии из-за пористос ти в тонких слоях и дороговизны осаждения толстых (20—25 мк) слоев Поэтому в технике применяют так называемые многослойные покрытия например медь + никель, никель + медь + никель, медь + никель -f хром, никель медь -р никель + xposi и т. д. [c.125]

    Защитить железо от коррозии никелированием можно лишь при наличии сравнительно толстых покрытий, поэтохму в практике широко развито никелирование железа с промежуточным подслоем меди. Иногда применяется комбинированное покрытие первый слой — никель, промежуточный слой — медь из меднокислой ванны и последний слой — никель. Лишь в некоторых случаях необходимо покрывать железо никелем без подслоев меди (например, таким способом никелируют хирургический инструмент, ибо продукты коррозии меди ядовиты также поступают с клише и стереотипами для полиграфического производства с целью получения повышенной поверхностной твердости). Как правило, для защиты никелевых покрытий от механических повреждений и сохранения декоративного вида покрытия на более длительный срок, поверх никеля электролитичеоки осаждают тонкий слой хрома. Для защиты от коррозии в атмосферных условиях суммарная толщина комбинированного покрытия при никелировании составляет 25—30 ц, а для изделий, работающих в жестких условиях, — 45р.. Толщина наружного слоя никеля не должна быть менее 12—15 [c.275]

    Защитно-декоративные покрытия предназначены для придания изделиям декоративного вида с одновременной защитой их от коррозии. Сюда относятся многослойные покрытия медь + никель + хром, ни-кель+хром, медь+никель и др., никелевые, золотые и серебряные для ювелирных изделий, эматалевые. [c.143]

    Преимущество бронзы перед никелевым подслоем подтверждается прямыми коррозионными испытаниями. Так, при испытании в коррозионной камере распылением трехпроцентного МаС1 стальные образцы с бронзовым покрытием толщиной 12,5 лг/с- -0,5 мк хрома после 72 час. имели единичные точки ржавчины, в то время как при толщине блестящего никеля 25 мк 0,5 мк хрома много очагов коррозии появилось уже через 48 час. Необходимо отметить, что и трехслойное покрытие бронза—никель—хром по коррозийной стойкости превосходит наиболее широко распространенную комбп-нгцию медь—никель—хром. [c.14]

    Сурьмяные покрытия в настоящее время не используют в отечественной гальванотехнике, хотя в некоторых случаях они могут оказаться довольно эффективным защитным покрытием. По данным [91] при испытании в атмосфере соляного тумана стальных образцов сурьмяное покрытие показало себя несколько более стойким, чем цинковое. Сравнительные натурные годичные испытания образцов цинкового литья выявили равную эффективность защитного действия покрытий сурьмой толщиною 31 мкм с тонким внешним слоем хрома и трехслойного медь — никель — хром такой же толщины. Лабораторные испытания сурьмяных покрытий в различных условиях показали, что при повышенной влажности и в камере тепла и влаги с периодическим выпадением росы их антикоррозионные свойства почти равноценны никелевым покрытиям. В 3 %-м растворе Na l наблюдалась коррозия сурьмы. По мнению авторов работы [92], сурьмяные покрытия особенно целесообразно применять для защиты от коррозии деталей, подвергающихся воздействию сухого воздуха, загрязненного агрессивными испарениями. Эти покрытия хорошо полируются, но при длительном пребывании во влажной амосфере блеск постепенно уменьшается. [c.146]

    Применение хрома и его соединений. Хром широко используется в металлургической промышленности, в производстве высокопрочных, жароупорных, нержавеющих, кислотостойких и быстрорежущих сталей. Кроме сплавов на железной основе, хром широко используют в качестве иногда ничтожных добавок к цветным сплавам (медным, алюминиевым, цинковым, кобальтовым, никелевым), при получении высокотвердых карбидов (СГ3С2 и др.). Его применяют также для поверхностных покрытий (хромирования) стальных и железных изделий в целях предохранения их от коррозии и придания поверхностному слою большей твердости. [c.430]

    Пористость некоторых гальванических покрытий, например никелевых, может быть уменьшена путем увеличения толщины слоя. При покрытии хромом, с увеличением толщины слоя пористость покрытия не уменьшается. Поэтому, если хром наносят для защиты черного металла от коррозии в условиях воздействия влажного воздуха или раствора электролита, то применяют трехслойные покрытия, например, стальные детали сначала никелируют, затем меднят и, наконец, хромируют. [c.163]

    Если процесс электроосаждения ингибируется, то металл покрытия становится более твердым, менее пластичным и увеличивается его временное сопротивление. Твердость металлических покрытий, полученных из кислых растворов аквокатионов, возрастает при повышении pH примерно до значения, при котором происходит осаждение гидроокиси. Одновременно осаждающаяся окись действует как добавка, способствуя образованию мелкозернистых твердых покрытий. Твердые никелевые покрытия, применяемые в машиностроении, получают в ваннах с высоким значением pH. Многие другие металлы также могут быть нанесены в очень твердой форме электроосаждением из ингибированных ванн, но такие покрытия склонны к охрупчиванию под действием высоких внутренних напряжений, так что реальный предел прочности на растяжение для таких покрытий трудно определить. Пластичность непрерывно падает с повышением твердости, поэтому покрытие становится все более чувствительным к повреждению при ударных воздействиях, понижая тем самым свои защитные свойства в случае, если оно является катодом по отношению к подложке. Некоторые случаи применения гальваностегии рассчитаны на получение необычайно твердых износостойких видов покрытий из коррозионно-стойких металлов. Тонкие покрытия хрома и никеля часто наносят на изделия из стали с целью одновременного достижения высокой стойкости к износу и к коррозии. Толстые, или машиностроительные, гальванические хромовые покрытия постоянно растрескиваются в процессе электроосаждения, но тут же вновь зарастают, так что ни одна из трещин не проходит насквозь через все покрытие. Толстые хромовые покрытия практически не обладают пластичностью и вследствие наличия в них дефектов структуры имеют низкую эффективную прочность. Эти покрытия лучше служат на жестких подложках. [c.353]

chem21.info

Сплавы системы никель - хром

    СПЛАВЫ СИСТЕМЫ НИКЕЛЬ - ХРОМ [c.33]

    Этим, по-видимому, и можно объяснить различное поведение сплавов системы никель — хром и железо — хром в 0,1-н. растворе хлористого натрия при повышенных плотностях тока. [c.303]

    В зоне прилива и на малых глубинах поверхность никелевых сплавов подвергается биологическому обрастанию, например усоногими раками и моллюсками. Это затрудняет поддержание пассивности никеля и сплавов нпкель — медь, никель — хром — железо и никель — хром. Однако сплавы системы нпкель — хром — молибден сохраняют пассивность в зоне прилива и при обрастании. [c.79]

    СПЛАВЫ СИСТЕМЫ НИКЕЛЬ - ХРОМ - КРЕМНИЙ [c.47]

    Сплавы системы никель — хром — молибден, типичным представителем которых является Хастеллой С, обладают наивысшей стойкостью к коррозии в условиях зоны прилива. Поскольку сплавы, отнесенные к классу I (см. табл. 27), особенно стойки к воздействию хлор-попа, то их можно использовать на среднем уровне прилива в тех случаях, когда необходимо обеспечить полное отсутствие коррозии. [c.81]

    Сравнительные данные о коррозионной стойкости титана и некоторых других материалов в агрессивных морских условиях представлены в табл. 45 [69[. Следует отметить, что если бы в сравнении участвовали образцы из сплава Хастеллой С или других аналогичных сплавов системы никель—хром—молибден, то для них наблюдались бы столь же незначительные потери массы, как и для титана. [c.117]

    Наиболее известными сплавами системы никель — хром — молибден являются Хастеллой С и Инконель 625. По коррозионной стойкости в условиях погружения с этими сплав м-т могут сравниться только сплавы на основе титана. [c.86]

    Так, например, жаропрочные стали на основе железа можно эксплуатировать при температурах до 700° С, алюминиевые и медные сплавы — до 400-450 °С, свинец — до 150 °С. Эффективное сочетание жаропрочности и жаростойкости достигается в сплавах системы никель-хром — до 1000° С. [c.22]

    Легированные стали. Как разнообразны применения стали, так разнообразны и предъявляемые к ней в каждом случае требования. От строительной или конструкционной стали (арматура зданий, мосты, суда) требуется высокая прочность и хорошая свариваемость, от инструментальной (режущий, мерительный и штамовый инструмент) — высокая твердость и износоустойчивость, от стали других назначений — упругость, жаростойкость, жароупорность, кислотоупорность, высокие магнитные свойства (сердечники электромагнитов) или, наоборот, немагнитность. Придание стали заданных механических, физических или химических свойств достигается введением в нее добавочных, легирующих элементов, по одному, по два и более. В качестве легирующих элементов в металлургии используются главным образом металлы старших групп периодической системы ванадий, хром, марганец, вольфрам, молибден, никель, а из металлоидов кремний и бор. Легирующие элементы либо образуют в массе сплава химические соединения с его другими составными частями, чаще всего карбиды, либо же при затвердевании сплава кристаллизуются в виде твердого раствора в а-, а иногда в у-железе. Так, при затвердевании высоколегированных никелевых и марганцевых сталей превращения у-железа в а-железо не происходит, и затвердевшая сталь представляет твердый раствор никеля или марганца в у-железе. Большинство легированных сталей и прочих промышленных сплавов, как дюралюминий, электрон, латунь, бронза, имеют структуру твердых растворов. [c.699]

    ФЕРРОНИХРОМ [от лат. егг(ит) -железо, ни(келъ) и хром] — жаростойкий сплав на оспове системы никель — железо — хром. Разно- [c.645]

    Способность металлов сопротивляться коррозионному воздействию газов при высоких температурах называется жаростойкостью. Другая важная характеристика поведения металлов в условиях воздействия высоких температур — жаропрочность она определяет способность материала сохранять в этих условиях высокие механические свойства. Металл может быть жаростоек, но не жаропрочен, и наоборот, — жаропрочен, но не жаростоек. Так, например, алюминиевые сплавы жаростойки, но не жаропрочны при температуре 400—450° С. Быстрорежущая вольфрамовая сталь при 600—700° С жаропрочна, но не жаростойка. Достаточно эффективное сочетание жаростойкости и жаропрочности достигается в сплавах системы никель — хром. [c.11]

    Аналогичные закономерности были установлены и при пластической деформации жаропрочных сплавов системы никель — хром, легированных различным количеством алюминия. Нихром, содержащий 3—3,5% алюминия,. может обрабатываться давлением даже методом свободной ковки, причем лучшие результаты получа- [c.88]

    ВЛИЯНИЕ МАЛЫХ ДОБАВОК МЕДИ, НИКЕЛЯ И ХРОМА НА КОРРОЗИОННЫЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА СПЛАВОВ СИСТЕМЫ ЦИРКОНИЙ — ЖЕЛЕЗО — НИОБИИ [c.126]

    Система никель — хром. Из этой группы были исследованы следующие сплавы  [c.56]

    Система никель — хром с алюминием. Можно сказать, что вопрос окалиностойкости при высокой температуре для этого типа сплавов частично решен. Действительно, 3 типа сплавов — Аь Аг и А4 — дали хорошие результаты (табл. 8). [c.65]

    Рассмотрим работу А.С.Тумарева, Л.А.Панюшина и А.В.Гуца [ 26], в которой исследована связь между жаростойкостью, составом окалины и химическим составом сплавов системы никель - хром, содержащих от [c.33]

    Никель, кобальт и их сплавы легко поддаются диффузионному хромированию. Процесс протекает в основном по реакции восстановления. Эффективное покрытие на чистом никеле содержит в среднем 35—45% Сг II имеет хорошую пластичность. В покрытии ие наблюдается резкой диффузионной границы, существование которой можно было бы предполагать на основании диаграммы состояния системы никель—хром, но в зависимости от условий обработки, может присутствовать внешний слой богатой хромом Р-фазы, отделенный резкой границей (и существенно отличающийся по содержанию хрома) от слоя а-фазы (см. рис. 6.17, в II г). При определенных скоростях охлаждения покрытия может образовываться двухфазный слой [7]. Поверхностный слой покрытия, состояпгий из сплава никель—хром, обычно обладает высокой стойкостью к коррозии при обычных и высоких температурах. Из сказанного можно сделать вывод, что за счет применения одного и того же технологического процесса к разным материалам могут быть получены покрытия с широким диапазоном свойств. Разные типы покрытий, [c.373]

    Установлено, что по структуре и фазовому составу электроосажденных сплавов железо—никель—хромовые сплавы, полученные из сульфамидного электролита, отличаются от нержавеющих сталей. Электроосажденные сплавы имеют мелкодисперсное строение и представляют собой преимущественно а-фа-зу. Термообработка при температуре 800—850° С в защитной атмосфере вызывает укрупнение зерен и изменение фазового состава сплава в соответствии с диаграммой состояния системы железо—никель—хром. Табл. 1, рис. 4, библ. 8. [c.124]

    Сложнолегирсванные сплавы железа на основе системы железо—хром обладают высокой жаропрочностью и жаростойкостью. Они служат основой коррозионно-стойких сталей. Главный легирующий компонент — никель. [c.419]

    Основные материалы оборудования парогенераторов стали перлитного класса. Широко используются стали (табл. 30.3) с малыми добавками ванадия. В сталях, предназначенных для изготовления труб пароперегревателей, рекомендуется никель заменять элементами с высокой температурой плавления сульфидов и сульфидных эвтектик, например марганцем. Аустенитная сталь ДИ-59, содержащая марганец, медь и ниобий, обладает стойкостью в продуктах сгорания высокосернистого мазута при температуре 650 С и устойчива к межкристаллитной коррозии. Для изготовления шипов и подвесок используют малопластичные, но весьма коррозионно-стойкие сплавы системы Ре—Сг—51 (сильхромы) и Ре—Сг—51— А1 (сихромали) [3]. При повышении концентрации алюминия и хрома возрастает стойкость к ванадиевой коррозии, добавки молибдена ухудшают стойкость сталей в продуктах сгорания мазута. Для изготовления стоек и подвесок труб газоходов, температура которых превышает температуру поверхностей нагрева, используют хромоникеле- [c.204]

    Стойкость никеля при добавлении хрома улучшается как в восстановительных, так и в окислительных растворах. Сплавы при этом обнаруживают склонность к пассивированию, возрастающую при содержании хрома выше 10—12% (рис. 5.14) [15]. Среди сплавов с добавками хрома заслуживает внимания сплав с 35% Сг и 65% N1 (корронель 230), специально разработанный для применения в установках с азотной кислотой. К никелевохромовым сплавам относятся также жаростойкие сплавы для элементов электронагревательных приборов (около 80% N1, 20% Сг) и жаропрочные сплавы аналогичного состава, содержащие упрочняющие присадки (А1, и др.). К тройной системе N1—Сг—Ре относятся жаростойкие сплавы типа инконеля (М1Сг16Ре), стойкие также в окислительных растворах. [c.356]

    Анодная защита в отличие от катодной применяется только в тех случаях, когда металл или сплав изделия легко переходит в пассивное состояние, которое должно сохраняться в окислительных средах. К легко пассивирующим металлам относятся хром, никель, титан, цирконий и другие и сплавы системы железо — цементит, содержащие эти металлы. Анодная защита осуществляется присоединением к конструкции положительного полюса источника постоянного тока (анода), а катоды помещаются около поверхности изделия. При анодной защите резко снижается скорость коррозии при минимальном расходе энергии, так как сила тока очень. мала. Анодную защиту применяют для предохранения изделий, соприкасающихся с сильно агрессивной средой. Очень часто защищают изделия, изготовленные из титана, циркония, легированных сталей, например 10Х18Н9Т (рис. 31), углеродистых сталей. При таком методе увеличивается срок службы аппаратуры. Анодную защиту также часто используют с целью снижения загрязнений агрессивной среды продуктами коррозии. [c.130]

    Срок службы нагревательных эле.ментов ограничивается либо возрастанием электрического сопротивления вследствие окисления, либо появлением разрывов в местах перегрева, где происходит очень интенсивное окисление. Проведение испытаний при повышенных по сравнению с рабочими те.мпературах значительно ускоряет окисление. Быстрое чередование нагреза с охлаждение.м способствует образованию трещин в защитной окисной пленке и ее отслаиванию. Ускорение окисления вследст-зие частичной потери защитных свойств пленки при повторных циклах нагрева и охлаждения схематически представлено на рис. 95. Кривые этого типа были получены в опытах над сплавами системы. хром — тантал — никель при охлаждении образцов на воздухе через равные промежутки времени. Как известно [339, 521, 652—655], результаты испытаний на долговечность с чередованием циклов нагрева и охлаждения нельзя увязать прямо с результатами испытаний при непрерывном окислении, что овидегельетвует о важном значени при эксплуатации чередования нагрева и охлаждения, которым подвергают проволоку Б процессе испытаний на долговечность. [c.279]

    Пользуясь этими тремя фигурами, мы можем определить ориентировочные температуры плавления любого состава системы. Как и в предыдущем случае, здесь также возможны составы, для которых пригодны две из этих фигур. Пусть, например, имеем сплав с содержанием 5% Сг, 257о- Ре, 50% N1 и 20% Си. Нанесем на фиг. 70 содержание железа никеля (хром и медь изобразятся при этом суммарно). В результате получим почку 3. Аналогично этому, на фиг. 71 на- [c.123]

    При температуре более 1100 °С в МдЛ1204-шпинели (рис. 2.9) происходит замена Mg +- на АР+-ион из-за увеличения растворимости AI2O3. Вакансии образуются в катионной подрешетке. При комнатной температуре образуется система стехиометри-ческий шпинель -А120з. Тип решетки шпинели распространен среди продуктов окисления различных сплавов и твердых веществ, содержащих никель, хром, магний и другие металлы. [c.36]

    Как и для нержавеющих сталей, применяют две меры предупреждения межкристаллитной коррозии. Во-первых, стремятся уменьшить количество образующихся карбидов путем понижения содержания углерода в материале до минимально возможного на практике уровня (сегодня можно обеспечить содержание углерода в сплаве не более 0,03%). Во-вторых, в сплав вводят добавки таких элементов, как титан и ниобий, которые образуют с остаточным углеродом более устойчивые карбиды, чем МегзСв, и тем самым предотвращают появление обедненных хромом участков. Здесь следует отметить, что из-за большей по сравнению с нержавеющими сталями активности углерода в богатых никелем сплавах в эти сплавы необходимо вводить и большее количество такого стабилизирующего элемента, как титан, чем в стали [46]. В лабораторных испытаниях в кислых растворах с сильными окислительными свойствами, таких как азотная кислота, содержащая хроматы и бихроматы, наблюдалась межкристаллитная коррозия нержавеющих сталей и сплавов N1—Сг—Ре в отсутствие межзеренного выделения карбидов [47], но для практики это явление существенного значения, по-видимому, не имеет. Современный обзор межкристаллитной коррозии сплавов системы Ре—N1—Сг, включающей нержавеющие стали и никелевые сплавы, содержится в работе [47]. [c.146]

    В последние годы процесс распыления применяется для наплавки твердых сплавов системы Сг—N1—В, называемых колмоноя-ми. Совсем недавно для этих же целей стали распылять сплавы системы стеллит на основе кобальта. Эти материалы (в виде порошка) напыляют на поверхность обычным путем. После нанесения покрытия последнее подвергается термической обработке в пламени горелки, в результате чего происходит плавление. Такие покрытия используются в основном с целью повышения стойкости к износу, но поскольку поверхностный слой представляет собой сплав никель — хром или кобальт — хром, то они обладают и очень высокими антикоррозионными свойствами. [c.385]

chem21.info

Сплавы никеля с хромом - Справочник химика 21

    Интересную группу представляют собой сплавы никеля с хромом (нихромы), обладающие достаточно высокой тугоплавкостью, стабильностью на воздухе при повышенных температурах и значительным электросопротивлением. Они применяются в качестве нагревательных элементов печей, позволяющих получить температуру до 1100—1200 °С. [c.349]

    В различных приборах применяются никелевые сплавы нихром (сплав никеля с хромом для изготовления термопар), плати- [c.402]

    Сплавы никеля с хромом [c.228]

    Анализ сплавов никеля с хромом, марганцем, вольфрамом и хромистой меди [c.196]

    ХРОМЕЛЬ — сплав никеля с хромом (9—10%), который применяют в качестве электрода для термопар (хромель-алюмель), отличающийся постоянством [c.280]

    Хромель — сплав никеля с хромом (9—10%), применяемый в пирометр ) в качестве электрода для термопар. [c.152]

    Так как электролиз проводится при высоких температурах (1173-1273 К), то электрохимический и химический виды поляризации не играют существенной роли в потере напряжения в ячейке, В качестве электродов применяются никель, кобальт, сплавы никеля с хромом, никель с кобальтом и некоторые химические соединения, например карбид хрома [1 , 20], [c.171]

    Сплавы никеля с хромом (нихромы) являются жаростойким и в высшей степени жаропрочным и кислотостойким материалом. [c.228]

    Сплавы никеля с хромом — нихромы — могут содержать до 35%) хрома при условии сохранения пластичности. Сплавы этого состава представляют собой твердые растворы К1-Сг на основе 7-структурной решетки никеля. [c.210]

    Кокс из зоны реакции удаляют непрерывно. В некоторой степени можно избежать образования кокса, заменив стальную аппаратуру зоны реакции на аппаратуру из сплавов никеля с хромом. Практически образование кокса полностью устраняется вводом в зону реакции большого количество водяного пара, который, с одной стороны, [c.265]

    Для выяснения роли никеля в сплавах было изучено анодное поведение опытных сплавов никеля с хромом. Как видно из анодных поляризационных кривых (рис. 146), пассивация этих сплавов облегчается при увеличении содержания в них хрома. Никель, а также сплавы его с небольшим содержанием хрома быстро активируются при анодной поляризации в растворах хлористого натрия. [c.301]

    Нихром ы—сплавы никеля с хромом состава, например 80% N1 и 20% Сг, или 60% N1, 25% Ре, 11% Сг и 4% Мп (готовят нихромы и другого состава). Нихромы отличаются большим электросопротивлением, мало окисляются и сохраняют высокие механические качества при сильном нагреве, благодаря чему применяются в электрической промышленности (для изготовления электрических нагревательных приборов). [c.314]

    Сплав никеля с хромом — нихром отличается сравнительно большим электросопротивлением и применяется в виде проволоки в нагревательных приборах. [c.505]

    Больше же всего никель применяется в металлургии специальных гибких и прочных сталей, из которых изготовляются части автомобилей, паровозов, и в тяжелом машиностроении. Высокомагнитные (45—80%) и немагнитные (10—25%) сплавы никеля с хромом и железом имеют большое значение в приборостроении. [c.706]

    Нихром представляет собой сплав никеля с хромом, а хромаль — сплав хрома с алюминием. [c.96]

    НИХРОМ [от ни(кель) и хром] — жаростойкий сплав никеля с хромом один из никеля сплавов. Запатентован (1905) в США. Содержит 65—80% N1, Ю—30% Сг. Легируют сплав кремнием (до 1,5%) или алюминием (до 3,5%), микродобавками редко-и щелочноземельных элементов. Наиболее распространен сплав, содержащий 20% Сг. В СССР выпускают сплавы марок Х20Н80-П, Х20Н75Ю и ХН70Ю. П. отличается редким сочетанием высокой жаростойкости (до [c.85]

    Сплавы никеля с хромом и железом имеют большое значение в приборостроении. Нихром, сплав никеля и хрома, отличается большим электросопротивлением, поэтому он применяется в виде проволоки в нагревательных приборах. Добавка никеля к сталям придает им вязкость. [c.473]

    Сплавы на основе никеля. Яилсролы — сплавы никеля с хромом и другими металлами, например, такие 1) 80% никеля, 20% хрома 2) 60% никеля, 25% железа, 15% хрома. [c.322]

    Кобальт и никель применяют для получения жаропрочных сплавов и сплавов специального назначения виталлиума (65% Со с Сг, W и Мо), стеллита (до 60% Со с Сг, W и С), сплавов никеля с хромом (нимоник, инконель, хастеллой, нихром), с медью (монель), с железом (инвар, пермаллой). В больших количествах никель расходуется на никелирование. Ni является катализатором процесса гидрогенизации жиров. [c.315]

    Применение. Кобальт и никель являются важными компонентами легированных сталей. Используют и спе-циальные сплавы на основе кобальта и никеля. Так, кобальт составляет основу жаропрочных (с железом и ванадием) и высокотвердых (с карбидом вольфрама) сплавов. Никелевые сплавы обладают высокой механической прочностью, стойкостью при высоких температурах, устойчивостью к коррозии. Сплав никеля с хромом и другими веществами — нихром имеет высокое электрическое сопротивление. [c.290]

    Широко применяются никелевые сплавы для изготовления ответственной аппаратуры и изделий, работающих в области высоких температур. В нагревателях электропечей и других нагревательных аппаратах щироко применяются сплавы никеля с хромом — нихромы. Так, нихром марки Х15Н60 содержит 55—61% N + 00, 15—18%, Сг, 1,2 /о Мп и остальное лелезо (ГОСТ 492—52). [c.159]

    В сильноокислительных средах никель и его сплавы, особенно сплавы никеля с хромом, устойчивы благодаря пассивации. [c.141]

    Сплавы никеля с хромом (нихромы) становятся весьма жаростойкими и жаропрочными при введении в состав 20—30 % Сг. Широко известны нихромовая проволока и лента для изготовления электрических нагревателен. Имеется ряд других, более сложнолегированных сплавов никеля (инконель, нимоник и др.)., применение которых имеет место только в специальных областях техники в связи с дефицитом никеля. [c.77]

    Отличительной особенностью промышленных сплавов никеля с хромом до 39—40 % и углеродом выделение карбидов типа МазСв на границах зерен при нагреве в интервале температур 600—800 С (рис. 3.005, б). Температура растворения карбидов 1100°С. [c.171]

    Нихромы. Сплавы никеля с хромом (60—80%Ы1 -Ь 13—20% Сг + 6— 20% Ре) отличаются высокой противокоррозионной стойкостью в любой атмосфере в промышленной атмосфере они слегка тускнеют, но в меньшей степени, чем любые другие сплавы. [c.309]

    B. H. Павликов. ХРОМЁЛЬ [от хром и (ник)елъ] — сплав никеля с хромом. Пром. произ-во начато в 20-х гг. 20 в. Представляет собой однородный твердый раствор хрома в никеле, имеющий гранецентрированную кубическую решетку. В СССР производят X. марок Т(НХ9,5) (9—10% Сг, остальное — никель) и К(НХ9) (8,5—9,5% Сг, остальное — никель). Содержание иримесей в обоих сплавах 0,3% Fe, 0,4% Si, 0,05% Mg, 0,3% Mn, 0,2% u, 0,002% Pb, 0,01% S, 0,3% , 0,003% P, 0,002% Bi, 0,002% As и 0,002% Sb. X. отличается хорошими мех. св-вами и жаростойкостью, немагнитен. Увеличение содержания хрома до 10% снижает т-ру начала плавления обоих сплавов по сравнению с чистым никелем примерно на 10° С. Т-ра плавления X. 1435° С, плотность 8,7 г/см , удельное электрическое сопротивление 0,6—0,7 [c.699]

    Значительное распространение получили сплавы на основе никеля, а также никеля и меди. Сплавы никеля с хромом (около 20% Сг) и некоторым,и другими элементами, обладающие специальными свойствами (например, жаропрочностью), обычно выплавляют на лредприятиях черной металлургии. Анализ указанных сплавов рассмотрен в гл. V. В данной главе описывается анализ сплавов никеля и меди с хромом, марганцем, алюминием и другими элементами типа хромеля, копеля, константана, мельхиора, нейзильбера, лигатур и им подобных. [c.174]

    Исследовалось также влияние материала катода на скорость катодного восстановления гипохлоритов и хлоратов. На катодах из сплава никеля с хромом долю катодного восстановления при 40 °С можно снизить до 2% [71]. Удовлетворительные результаты получены на катодах из стали Х18Н12М2Т [72], ОХ17Т и 1Х18Н9Т [73], однако о практическом использовании катодов из этих сталей сведений нет. [c.39]

    Для нагревателей электропечей и других аппаратов широко используются нихромы (сплавы никеля с хромом). Нихром марки Х15Н60 содержит 55—61% № -Ь- Со 15—18% Сг 1,2% Мп и остальное — железо (ГОСТ 492-52). [c.193]

    Как правило, латуни в растворах муравьиной кислоты более стойки, чем бронзы никель обладает незначительной химической стойкостью сплав никеля с хромом (нихром) лучше, чем никель противостоит действию муравьиной кислоты. Например, при 20°С в 25%-ной муравьиной кислоте скорость коррозии нихрома равна нулю, а чистый никель в 20%-ном растворе при той же температуре корродирует со скоростью 1 мм1год. [c.93]

    В качестве сопротивлений для электропечей применяют сплавы никеля с хромом, железом и алюминием. Известны следующие сплавы НМцАК 2—2—1 (алюмель) НХ9,5 (хромель) ЭХН (нихром). [c.468]

    Никель с медью (30% Си, 3—4% Fe + Мп) образует сплав повышенной стойкости в неокислительных кислотах (фосфорная, серная, соляная, органические кислоты). Еще более высокой стойкостью в этих средах обладают сплавы никеля с молибденом (16—22%), содержащие также железо (4—20%). Эти сплавы стойки даже в концентрированной горячей соляной кислоте. При введении в такой сплав 15—17% Сг он приобретает стойкость в кипящей азотной кислоте концентрации до 70%. Такие сплавы применяют в химическом машиностроении. Как жаропрочные и стойкие материалы широкое применение нашли сплавы никеля с хромом (нихромы), в которые иногда вводят железО (ферронихромы). [c.55]

    По данным Вуда [509], величина частиц окисла в сплавах меди с алюминием возрастала в зависимости от глубины проникновения, содержания алюминия и температуры окисления. И по наблюдениям Шварцкопфа [510], величина частиц окисла в двойных сплавах никеля с хромом или алюминием изменялась при [c.194]

    Много усилий было затрачено на поиски идеального сплава, способного противостоять коррозии под действием топливной золы, но в настоящее время такого сплава все еще нет. Стали, содержащие значительные добавки молибдена, как правило, быстро корродируют [772, 895, 899, 907]. По-видимому, повышенное содержание в сталях молибдена, вольфрама и ванадия всегда оказывает вредное действие [902]. Сравнительно хорошей стойкостью обладают сплавы никеля с хромом, нержавеющая сталь 18Х8Н и хромоалюминиевая сталь 37Х8А. Хотя пятиокись ванадия постепенно и разъедает защитную пленку окиси хрома СггОз, хромистые стали с содержанием до 40% Сг довольно хорошо выдерживают воздействие топливной золы [908], а особенно благоприятны в этом отношении добавки кремния [907]. Фитцер и Шваб [907] выявили влияние присадки кремния и хрома к железу путем периодического погружения образцов в расплав пятиокиси ванадия при 925° С. Результаты их исследования иллюстрируются на рис. 115. [c.393]

chem21.info

никель-хром — с русского

  • никель-хром — никель хром, никель хрома …   Орфографический словарь-справочник

  • ХРОМ — см. ХРОМ (Сг). Соединения хрома встречаются в сточных водах многих промышленных предприятий, производящих хромовые соли, ацетилен, дубильные вещества, анилин, линолеум, бумагу, краски, пестициды, пластмассы и др. В воде встречаются трехвалентные… …   Болезни рыб: Справочник

  • Хром — Для термина «Chrome» см. другие значения. Запрос «Cr» перенаправляется сюда; см. также другие значения. 24 Ванадий ← Хром → Марганец …   Википедия

  • Никель — У этого термина существуют и другие значения, см. Никель (значения). 28 Кобальт ← Никель → Медь …   Википедия

  • ОАО "ГМК "Норильский никель": история и структура компании — ОАО Горно металлургическая компания Норильский никель (ГМК Норникель ) крупнейший в мире производитель никеля и палладия, один из крупнейших производителей платины и меди. Норникель также производит кобальт, хром, родий, серебро, золото, иридий,… …   Энциклопедия ньюсмейкеров

  • Норильский никель — (Norilsk Nickel) Компания Норильский никель , история компании, деятельность компании Компания Норильский никель , история компании, деятельность компании, руководство компании Содержание Содержание Определение Миссия и стратегия История Слияния… …   Энциклопедия инвестора

  • МЕТАЛЛЫ ЧЕРНЫЕ — железо и его сплавы, важнейшие конструкционные материалы в технике и промышленном производстве. Из сплавов железа с углеродом, называемых сталями, изготавливаются почти все конструкции в машиностроении и тяжелой промышленности. Легковые, грузовые …   Энциклопедия Кольера

  • легированная сталь — помимо обычных примесей содержит так называемые легирующие элементы (смотри Легирование). Различают низколегированную (суммарное содержание легирующих элементов до 2,5%), среднелегированную (2,5 10%) и высоколегированную (свыше 10%) сталь. * * *… …   Энциклопедический словарь

  • ХРОМОВЫЕ СПЛАВЫ — жаропрочные сплавы на основе хрома с добавками редкозем. элементов, никеля, титана, ванадия и др. элементов. По прочностным св вам при темп ре 1100 1200 оС занимают ср. положение между сплавами на основе железа и никеля и сплавами на основе более …   Большой энциклопедический политехнический словарь

  • Гальваническая пара — Коррозия между двумя типами стали Пара не являющихся одинаковыми проводников (разные материалы), обычно металлов, в электрическом контакте. Названа в честь …   Википедия

  • МЕТАЛЛОПОКРЫТИЯ — тонкие металлические или органические поверхностные покрытия металлических изделий, позволяющие улучшить их внешний вид, защитить от коррозии, повысить износостойкость, улучшить электрический контакт, облегчить пайку, изменить отражательные или… …   Энциклопедия Кольера

  • translate.academic.ru

    Сталь хром-никель 18/10, что это такое?

    У многих хозяек на кухне есть нержавеющая посуда, но большинство из них даже не предполагает, из чего она сделана, а также не подозревает о тех преимуществах, которые она дает. Всевозможные кастрюли, сотейники и прочие атрибуты идут в обиход по одной простой причине - они долговечны. Но никто не задумывается, что это всего лишь одно из многочисленных достоинств такой посуды.

    Интересные сведения о нержавеющей посуде

    Уже в 1913 году мир узнал об уникальных свойствах стали, ее устойчивости к коррозии. Гарри Бреарли, добавив 10% хрома в сталь, понял, что теперь сплав устойчив к повышенной температуре, но общество не приняло новый материал, так как считало все эти свойства совершенно невыгодными. Бреарли всеми силами старался убедить в обратном и выпустил первую в истории партию ножей из хромированной стали. Ножи быстро тупились и это существенно повлияло на популярность изделий. Лишь спустя десять лет приемник Бреарли – Хартфилд - сумел исправить этот изъян. Он обнаружил, что при добавлении никеля, любые механические воздействия на материал не влияют и тем самым обеспечивают длительную службу кухонных приборов. Интересно то, что сплав, разработанный для изготовления ножей, впоследствии стали активно использовать в нефтедобывающей, машиностроительной и даже военной отраслях.

    Расшифровка маркировки «сталь 18/10»

    Сталь сама по себе является сплавом. В обязательном порядке в состав входит железо (около 50%), а для увеличения его прочности добавляется углерод (не более 0,8%). На дне любой качественной посуды можно обнаружить маркировку (несколько чисел). Это может быть 18/8, 18/10, 18/0 и др. Всего два числа несут большой блок информации для потребителя. Первое число означает процент хрома в стали. Чем он больше, тем надежнее защитный слой посуды. 0, 8 и 10 – проценты никеля. Именно он создает привлекательный внешний блеск и также выполняет функции защиты. Маркировка 18/10 считается самой лучшей, и ее активно используют на профессиональных кухнях. Сталь этой маркировки также называют пищевой.

    Почему пищевая сталь – это отличный выбор для приготовления пищи?

    • Она имеет гладкую блестящую поверхность, в которой отсутствуют поры, и создает привлекательный внешний вид.
    • Посуда очень прочная, не деформируется и не царапается, поэтому смело можно использовать металлические ложки, вилки или лопаточки.
    • Гигиенична, так как не образует микропор и щелей, в которых могут скапливаться остатки пищи и провоцировать развитие микробов.
    • Долговечность использования гарантируется, поэтому при условии надлежащего ухода и хранения такая посуда будет вам служить десятилетиями.
    • Наличие многослойного дна препятствует пригоранию и хорошо аккумулирует тепло, поэтому пища готовится быстрее.
    • Такая посуда легко функционирует на всех видах плит, даже индукционных. А как известно, такие варочные поверхности могут контактировать не с каждым материалом.
    • Легко поддается очистке и даже серьезной санитарной обработке. Не зря сплав используют еще и в медицине.
    • Пищевая сталь обладает антикоррозийными свойствами, поэтому не выделяет щелочей и кислот, тем самым гарантирует безопасное приготовление вкусной и здоровой еды без примесей.
    • Материал полностью экологичен, так как не имеет искусственных компонентов. Его легко перерабатывать и создавать новые изделия. Тем самым производители снижают потребление природных ресурсов.
    • Ассортимент выпускаемой продукции из нержавеющей стали сегодня просто огромный, начиная от кастрюль, сотейников и заканчивая ножами и вилками.
    Дизайн BRA Дизайн MASTER INOX Дизайн RADIKA INOX

    Как правильно выбирать такую посуду?

    Несмотря на все неоспоримые достоинства, приобретенная вами посуда может демонстрировать обратное. Это свидетельствует о том, что вы купили некачественную продукцию. Но таких конфузов можно избежать, следуя нескольким правилам:

    • покупать посуду следует всегда в специализированных магазинах;
    • такая посуда не может стоить очень дешево, так как высокое качество и сложная технология изготовления требуют определенных финансовых затрат;
    • нужно обращать внимание на толщину стенок и дна: первые не должны быть менее 0,5 мм, а дно – не меньше 3 мм;
    • шлифовка поверхности как внутри, так и снаружи обязана быть безупречной – без вмятин и шероховатостей;
    • информация о составе материала на дне также должна присутствовать, это свидетельствует о том, что посуда фирменная.

    Учитывая все эти данные, можно приобрести хорошую продукцию, которая обеспечит вас здоровой и полезной пищей, будет удобной в эксплуатации и не подведет на протяжении долгих лет.

    Сегодня существует множество компаний, выпускающих качественную нержавеющую посуду, поэтому у вас есть все шансы подобрать нужную. Есть продукция с разной толщиной стенок и дна, соотношением металлов и дополнительной атрибутикой, такой как крышка, встроенный термометр и пр. В любом случае пищевая сталь заслуженно завоевала всемирную популярность и активно используется уже почти 100 лет.

    ekodomus-market.ru

    Никель хромом - Справочник химика 21

        Один и тот же центр может выполнять несколько функций, в частности таким свойством обладают анионные центры, участвующие не только в анионном обмене, но в адсорбции и электронном обмене. Работа некоторых катионных центров связана с изменением валентности катиона (например, Си+ч= Си +), и это позволяет им активно участвовать в процессах адсорбции и электронного обмена по окислительно-восстановительному механизму [5]. Наибольшей каталитической активностью обладают соли металлов переменной валентности (кобальта, марганца, железа, никеля, хрома, серебра, меди), действующие по описанному механизму (см. гл. 2). [c.196]     Каталитическое восстановление оксидов азота. Проводят 13 присутствии в качестве катализаторов сплавов из металлов платиновой группы (палладий, рутений, платина, родий) или составов, содержащих никель, хром, медь, цинк, ванадий, церий и др. Восстановителями служат водород, оксид углерода, метан п другие углеводороды [c.65]

        Отделение железа от алюминия, никеля, хрома и некоторых других элементов путем осаждения купфероном. С ионами трехвалентного железа купферон образует нерастворимый в кислотах купферонат железа  [c.152]

        НДА (ТУ 6-00-05808009-248-92) — нитрит дициклогексиламина. Это порошок белого цвета с желтоватым оттенком, растворимый в этаноле, метаноле, воде, ацетоне. Предназначен для долговременной (10—20 лет в зависимости от способа применения и условий хранения изделий) защиты от атмосферной и микробиологической коррозии изделий из стали, алюминия и его сплавов, никеля, хрома, кобальта. Ингибитор применяют в виде порошка, засыпаемого в сублиматор для получения ингибированного воздуха порошка для опудривания или напыления на зашитные поверхности спиртовых растворов ингибированной бумаги с содержанием ингибитора 14— 20 г/см1 [c.376]

        Активационная поляризация определяет также кинетику осаждения или растворения металла. Она мала для таких металлов, как серебро, медь, цинк, но возрастает для металлов переходной группы, например железа, кобальта, никеля, хрома (см. табл. 4.1). Природа анионов электролита больше влияет на перенапряжение процессов разряда и ионизации металла, чем на реакцию выделения водорода. [c.53]

        Элементарный состав сухого активного ила (в %) С 44—75,8 Н 5—8,2 О 12,5—43,2 N 3,3—9,8 5 0,9—2,7. Минеральная часть ила содержит соединения кремния, алюминия, железа, кальция, магния, калия, натрия, цинка, никеля, хрома и др. [c.564]

        Например, куски прокаленной массы окислов никеля, полученных из карбоната никеля, измельчают в дробилке, снабженной ситом с отверстиями диаметром 1 мм, материал направляют на смешение. Синтезированную из окислов никель-алюминиевую шпинель размалывают и лишь затем смешивают со связующим и формуют. Перед использованием размалывают магнезит, окись кальция, бораты, фосфаты, хроматы, окислы никеля, хрома, марганца и другие металлы. [c.21]

        Известно, что более однородную композицию можно получить при использовании так называемого мокрого способа смешения компонентов. Особенность его состоит в том, что они смешиваются в виде суспензий или водных растворов с последующим удалением избыточной влаги. При использовании этого способа смесь закиси никеля, окиси магния и гидрата окиси алюминия гомогенизируют с добавлением воды, после чего осадок отжимают на прессах и затем просушивают при температуре до 300 С. В другом примере приготовления катализатора готовится водная суспензия карбоната никеля, гидравлического цемента (весовое соотношение вода цемент равно 3 1). Смесь выдерживают до созревания и направляют на формовку. В раствор нитратов никеля, хрома, алюминия вводят карбонат калия, что сопровождается выпадением осадка, который отфильтровывают, промывают, сушат, прокаливают, размалывают, смешивают со связующим (цементом) и направляют на формование. [c.22]

        На скорость окисления масел в двигателях существенное влияние оказывают металлы, из которых изготовлены детали двигателя сталь, медь, свинец, цинк, олово, алюминий, кадмий, серебро, никель, хром и др. Некоторые из этих металлов оказывают явное каталитическое действие на процесс окисления масел, другие действуют слабо. Сильнейшими катализаторами окисления являются железо и медь, а также их соединения. Глубокому окислению способствуют и продукты первичного окисления компонентов масла. Они тоже могут взаимодействовать с металлами, давая вещества, в свою очередь ускоряющие процессы окисления. Было, например, установлено, что каталитической активностью обладают соли нафтеновых кислот, особенно нафтенаты свинца и меди. [c.14]

        В железе, марганце, меди, никеле, хроме, водород растворяется в атомарном или ионизированном состоянии, а с титаном, цирконием, ниобием, танталом, лантаном и некоторыми другими элементами образует химические соединения. Растворимость водорода в металлах первой группы с повышением температуры возрастает, а во второй группе падает. [c.817]

        В золе девонских прикамских нефтей содержание окислов кремния, алюминия относительно невелико, окислов железа мало в золе среднедевонской нефти и в несколько раз больше — в золе верхнедевонской. Все девонские нефти сильно обогащены ванадием и никелем, в некоторых нефтях эти два элемента в виде окислов составляют 44 -54% золы, В золе нефтей палеозоя, кроме обычных элементов. Присутствуют стронций, барий, ванадий, никель, хром, марганец, медь в золе нефтей карбона и нефти — в небольших количествах титан. Таким образом, в резервуары НПЗ поступает уже [c.24]

        Железо — никель — хром [c.951]

        В области низких температур при контакте водорода с металлами происходит его адсорбция на поверхности последних. Изучение адсорбции водорода на конденсированных слоях никеля, хрома, железа и платины при температурах от О до —195 °С показало, что она складывается из необратимого и обратимого процессов, соотношение которых зависит от температуры с повышением температуры доля обратимо адсорбированных молекул N06. увеличивается, а необратимо адсорбированных Л н уменьшается [29]. [c.19]

        В легированных сталях дополнительно определяют никель, хром, ванадии, вольфрам, молибден, алюминий, медь и другие легирующие элементы. При анализах руководствуются стандартами на методы химического анализа металлов и сплавов. [c.204]

        В атмосфере серы по тем же причинам, что и в случае кислорода, легирование никеля хромом (до 2 %) ускоряет реакцию при [c.197]

        Принцип получения металлического покрытия из газа совсем не сложен. Деталь помещают в камеру, подают туда пары карбонила и доводят температуру до точки разложения карбонила. В результате вся поверхность оказывается покрыта тонкой, но прочной пленкой никеля, хрома или молибдена, причем летучие пары проникают во все отверстия и закоулки, так что подобным образом можно металлизировать детали сколь угодно сложной формы, обеспечить им повышенную стойкость к коррозии и красивый внешний вид. [c.133]

        В рассматриваемом аспекте для химизма, механизма, кинетики и термодинамики процесса карбонизации большое значение имеет присутствие в нефтяном сырье различных функциональных групп, содержащих кислород, серу и азот, и их термическая стабильность (химическая активность), металлов, их соединений и комплексов, обладающих каталитическим действием на реакции распада, дегидрирования, полимеризации, конденсации и другие. С этой точки зрения,особо следует отметить такие металлы, как ванадий, никель, хром, молибден, кобальт, алюминий, железо и другие. [c.11]

        Получение блестящих осадков металлов непосредственно из электролитических ванн в гальванотехнике имеет огромное значение. Этому вопросу посвящено большое число работ, проведенных как в СССР, так и за границей. Особое значение этот процесс имеет при покрытии медью, никелем, хромом, золотом и другими металлами с защитно-декоративной целью, а также при покрытии родием, серебром, хромом, золотом и другими металлами для повышения отражательной способности поверхности изделий. Как [c.350]

        В противоположность блестящим осадкам молочные оСадки хрома, получаемые главным образом при высокой температуре (60—70 °С) и сравнительно небольшой плотности тока ( к = = 20—30 A/дм ), не имеют трещин и значительно менее пористы. Такие осадку при достаточной толщине ( 20 мкм) могут быть использованы для защиты стальных изделий от коррозионного разрушения в атмосферных условиях при повышенных влажности и температуре. Для этой цели В. И. Лайнером и О. А. Петровой был предложен процесс комбинированного двухслойного покрытия сначала молочным, а затем блестящим хромом (тонкий слой) взамен многослойного покрытия медь — никель — хром. [c.420]

        Изделия из алюминиевых сплавов, титана и его сплавов часто покрывают медью, оловом и его сплавами, кадмием, серебром, никелем, хромом для придания поверхности изделий определенных физико-химических и механических свойств (электропроводности, паяемости, сопротивления механическому износу). [c.426]

        Почему защитные свойства многослойного покрытия (например, типа медь — никель — хром ) выше, чем однослойного никелевого покрытия той же толщины Из каких предпосылок исходят, подбирая ту или иную схему многослойного покрытия  [c.294]

        Допустим, что на детали последовательно наносится трехслойное покрытие медь — никель — хром. В какой из трех ванн требования к конструкции подвески и расположению на ней деталей должны быть наиболее жесткими Почему  [c.294]

        Напишите уравнения реакций разложения нитратов меди, кобальта, никеля, хрома и взаимодействия образующихся при этом оксидов металлов с метафосфатом натрия. [c.183]

        Катализатор получают смешиванием осажденных в виде карбонатов соединений никеля, хрома и алюминия в следующем, соотношении N 0 (А12О3 + СгаОз) = 0,33 — 2 1 и А1аОз СГ2О3 = 3—6 1. Осадок промывают, нагревают до превращения карбонатов в окиси (температура 350—500° С), размалывают, смешивают с цементом, формуют и после затвердения цемента восстанавливают [c.61]

        Жаропрочные стали, обладающие одновременно свойствами теплоустойчивости и окалиносто1 1кости. Эти стали легируют в основном хромом и молибденом хромом и никелем хромом, ванадием и вольфрамом. [c.16]

        Увеличение электронного дефицита на атоме металла благоприятствует, как правило, повышению доли 1,4-структур. Из табл. 6 следует, что в присутствии аллилгалогенидных комплексов получаются полимеры с большим содержанием 1,4-звеньев, чем в присутствии чистых комплексов того же переходного металла. В полиизопренах, образующихся в присутствии продуктов реакции соединений кобальта, молибдена, никеля, хрома и циркония с галогенидами или алкилгалогенидами алюминия или титан.а, содержание 1,4-структур увеличивается с повышением электроноакцепторной способности сокатализатора и мольного отношения соката-лизатора к металлу. [c.104]

        Для приготовления катализаторов можно использовать и другие металлы, например, кобальт, лшлибден, платина, никель, хром, нанесенные на носители. В качестве носителей обычно применяют окислы алюминия, кремния и магния АЬОз, 3102, MgO. Недостатком последних катализаторов является повышенная их чувствительность к ядам, особенно соединениям серы. [c.65]

        В состав бронзы ВБ24 входят медь (основа), свинец, сурьма, фосфор в состав дюралюминия Д1Т — алюминий (основа), медь, магний, марганец и в очень небольших количествах железо, никель, цинк, кремний, титан в состав стали 12ХНЗА — железо (основа), никель, хром, марганец, кремний, углерод. [c.163]

        Давно уже известно, что некоторые металлы, например алюминий, магний, свинец, в атмосферных условиях, взаимодействуя с кислородом воздуха, окисляются с поверхности и покрываются тонкой пленкой окиси, которая благодаря своей компактности изолирует внутренние слои металла от соприкосновения с воздухом и этим защищает металл от дальнейшего окисления. Образование окисной пленки на поверхности свойствецно почти всем металлам, включая сюда медь, никель, хром и другие металлы, считавшиеся долгое время вполне устойчивыми к таким воздействиям. Однако на этих металлах толщина образующихся пленок во много раз меньше толщины тех пленок, существование которых было установлено ранее. Эти более тонкие пленки не изменяют внешнего вида поверхности металла и не обнаруживаются глазом. На рис. 138 изображены кривые роста окисной пленки на меди при различных температурах. Они показывают, что толщина пленки сильно возрастает с повышением температуры. [c.377]

        При решении вопроса о допустимости контакта между металлами можно также рукоиодствоваться следующими данными. Все металлы разделены на пять групп первая группа магний вторая — п,и1гк, алюминий, кадмий третья — железо, углеродистые стали, свинец, олово четвертая — никель, хром, хромистые стали (Х17), хромоиикелевые стали (Х18Н9) пятая — медноникелевые сплавы, медь, серебро. [c.182]

        Катодные металлические покрытия, электродный потенциал которых более электроположителен, чем потенциал основного металла, могут служить надежной защитой от коррозии только при условии отсутствия в них пор, трещин и других дефектов, т. е. при условии их сплощности, так как они механически препятствуют проникновению агрессивной среды к основному металлу. Примерами катодных защитных покрытий являются покрытия железа медью, никелем, хромом и другими более электроположительными металлами. [c.319]

        Защитно- декоратив- ное Трехслойное покрытие медь никель хром Двухслойное покрытие медь олово — никель (сплав) 36 15 0,5 36 1о Детали, требующие защитно-де-коративной отделки Толщина хромового покрытия средняя расчетная. Необходима механическая гл-жцеВ к -полировка подслоев [c.934]

        Эта схема подтверждается присутствием н-бутиленов в реакционных газах и сходством состава продуктов, полученных в случае этилена и н-бутиленов в присутствии цеолита СаМеУ (табл. 3). Активность проявляли катионы никеля, хрома и кобальта. Результаты, данные в табл. 3 и 4, получены с использованием никеля. [c.85]

        Большим достоинством титана является его способность сохранять пассивное состояние даже в растворах, содержащих значительные концентрации хлор-иона. Ниже приведены потенциалы и токи пассивации железа, никеля, хрома и титана в 1-н Н2504 [c.72]

        Производство стали. Чугун — хрупкий материал. При необходимости его перерабатывают в сталь. Для этого из него выжигают избытки углерода и добавляют другие металлы (марганец, никель, хром, молибден и т. п.) для придания специфических свойств, например ковкости, пластичности, прочности или антикоррозионной стойкости. Помимо чугуна в металлощихту можно добавлять стальной и чугунный лом, а также губчатое железо. Используют различные сталелитейные процессы, выбор которых обусловлен видом исходного сырья, стоимостью энергии (прежде, всего электроэнергии), а также требуемыми марками и сортами стали. [c.307]

        При введении в никель хрома он приобретает стойкость в окислителях (в частности, НЫОз и Н2СГО4). Определенное по измерениям критической плотности тока минимальное массовое содержание хрома, необходимое для анодной пассивации сплава в серной кислоте, составляет 14 % [3]. Однако сплавы с хромом более чувствительны к воздействию С1 и НС1. В неподвижной морской воде на них образуются более глубокие питтинги. Хром повышает также стойкость никеля к окислению при повышенных температурах. Широкое применение нашел сплав, содержащий 20 % Сг и 80 % N1 (см. разд. Ю.11.3). [c.361]

        Опытами на машине трения, проведенными в последние годы Ф. Боуденом и его сотрудниками, показано [И, 12], что различные соединения на разных металлах дают или физически адсорбированную пленку или пленку, являющуюся результатом хемосорб-ционного процесса. Например, на инертных металлах (платина, серебро, никель, хром) и на стекле смазочные свойства жирных кислот ниже, чем парафиновых углеводородов. Наоборот, на активных поверхностях (медь, кадмий, цинк, магний, железо, алюминий) жирные кислоты дают значительно меньшее трение. Таким образом, металлы, наиболее подверженные химическому воздействию в присутствии жирных кислот, смазываются наиболее эффективно. [c.150]

        Рост чугуна сопровождается заметным увеличением размеров чугунных изделий и снижением их прочности. Он происходит вследствие межкристаллитного окисления металла по границам зерен и включений графита. Поскольку объем образующихся окислов больше объема окисленного металла, происходит деформация изделия (вспучивание), что принято называть ростом чугуна. Белый чугун подвержен этому виду коррозии меньше, чем серый. Хорошо противостоят росту чугу-ны, легированные кремнием, никелем, хромом и марганцем, [c.26]

        Образующиеся покрытия содержат до 10% и более неметаллических частиц и приобретают в зависимости от состава частиц высокую антикоррозионную стойкость, твердость, термостойкость, смазывающие и другие новые свойства. Широкое применение получили композиционные покрытия никелем с последующим микропористым хромированием. Благодаря присутствию в промежуточном никелевом слое множества мелких токонепроводящих частиц слой осаждаемого на нем хрома имеет микропористую структуру (до 10 пор на 1 см ). При этом коррозия никеля, как анода в образующихся микрогальваноэлементах (никель/хром), протекает равномерно по всей поверхности и, таким образом, проникание ее вглубь замедляется, [c.353]

        Кроме окислов азота или аммиака, в реакциях HNO3 с металлами выделяется вода и образуется азотнокислая соль. Эту соль дают образовавшийся ион металла и ион кислотного остатка азотной кислоты — N0 . Следует также учитывать, что в случае образования NHg он сразу же соединяется с частью HNO3, превращаясь в соль Nh5NO3. Атом N в составе иона NH , как и в молекуле NHg, имеет валентность минус 3. Известно, что действию концентрированной азотной кислоты не подвергаются некоторые металлы, стоящие в середине ряда напряжений, например алюминий, железо, никель, хром. Объясняется эта пассивность образованием сплошной защитной тонкой пленки безводной окиси на поверхности металла, не поддающейся действию азотной кислоты. [c.97]

    chem21.info

    Сталь хромо-никель-молибденовая - Справочник химика 21

        Применение хромо-никелевой и хромо-никель-молибденовой стали [c.55]

        Многие легированные стали, т. е. такие стали, которые содержат значительные количества других металлов, помимо железа, имеют ценные свойства и широко используются в промышленности. Марганцевая сталь (12—14% Мп) обладает исключительной твердостью, и из нее делают дробильные и мелющие агрегаты, сейфы и т. д. Никелевые стали имеют множество специальных применений. Хромованадиевая сталь (5—10% Сг, 0,15% V) обладает вязкостью и эластичностью, из нее изготовляют автомобильные оси, рамы и другие детали. Нержавеющие стали обычно содержат хром широко распространена нержавеющая сталь, содержащая 18% хрома и 8% никеля. Из молибденовых и вольфрамовых сталей изготовляют инструменты для скоростной обработки металлов. [c.552]

        Хромо-никель-молибденовая сталь. Хромо-никель-молибденовая сталь содержит, помимо хрома и никеля (примерно в тех же количествах, как и сталь 18-8), 3—4% молибдена и обладает еще более высокой стойкостью к органическим кислотам (например, уксусной), к растворам солей (например, хлористому аммонию), к сернистой кислоте и другим реагентам к соляной кислоте сплав малостоек. [c.29]

        Хромо-никель-молибденовые стали. Нержавеющие стали, химически стойкие в среде сернистой кислоты и сернистого газа под давлением, слабой серной кислоты (концентрации до 3—4%) при низких температурах, кипящей фосфорной, муравьиной и уксусной кислот, горячих растворов белильной извести и сульфитных щелоков. [c.55]

        Ре—Сг—N1—Мо (хромо-никель-молибденовые стали, а также некоторые специальные сплавы иа основе никеля), [c.462]

        Для улучшения экономики процесса предпринимаются попытки уменьшить напряжение на электролизе за счет снижения катодного потенциала. Снизить катодный потенциал в производстве хлоратов можно в результате обработки графитового катода солями некоторых металлов, например кобальта, молибдена, хрома или ванадия [60, 61], на которых перенапряжение водорода меньше, чем на графите. В биполярном электроде обрабатывают его катодную сторону [61 пат. США 3597337]. Значительный эффект снижения перенапряжения водорода достигался на хромовом, молибденовом и кобальтовом катодах, на катодах из хромоникелевой стали (18% Сг, 8% N1), а также из стали, легированной хромом, никелем, молибденом и титаном [1, с. 33]. [c.85]

        Для отделения молибдена от ванадия при анализе сталей ванадий осаждают из растворов, содержащих трех- и двухвалентное железо, добавлением к избытку раствора едкого натра [899]. Полученный осадок гидроокисей железа содержит практически весь ванадий. Молибден остается в растворе. В случае сталей, содержащих менее 3% Мо, часть трехвалентного железа восстанавливают сульфитом натрия до двухвалентного состояния при нагревании. Анализируя стали, содержащие более 3% Мо, к раствору навески прибавляют хлорид двухвалентного железа. Нитраты и вольфрамовая кислота должны отсутствовать. Сульфаты, хром и никель не мешают. Разработанный метод позволяет определять до 10% Мо в сталях, содержащих любые количества ванадия при этом достаточно однократного осаждения. Если сталь содержит более 10% Мо, то часть молибденовой кислоты соосаждается с гидроокисями железа (при выработанных условиях). В этом случае необходимо произвести переосаждение. По имеющимся данным, метод обеспечивает получение надежных результатов [330, 626, 929]. [c.111]

        ЛЯЮТ автомобильные рамы, обода и другие детали. Нержавеющие стали обычно содержат хром широко распространена нержавеющая сталь, содержащая 18% хрома и 8% никеля. Из молибденовых и вольфрамовых сталей изготовляют инструменты для скоростной обработки металлов. [c.438]

        Видно, что хотя уменьшение примесей внедрения (С+ -1-Ы) ниже 0,02 % несколько и удорожает сталь, однако уже сейчас стоимость высокочистых по (С+Ы) хромистых сталей не превышает стоимость высоколегированных хромоникелевых сталей типа карпентер. В дальнейшем с усовершенствованием технологии очистки хромистых сталей от примесей внедрения и увеличения объема их выпуска надо ожидать заметного снижения их стоимости. Катодное модифицирование палладием (0,25%) сплавов (титана и высокочистых хромистых сталей) заметно повышает их стоимость, но все же они не становятся дороже чисто никель-хромо-молибденовых сплавов типа хастеллой С. [c.215]

        Д. Н. Нахимовым было обнаружено, что плавка хромоникель-молибденовой стали с повыщенным количеством углерода, никеля, хрома и марганца по сравнению с другой плавкой имела повышенную склонность к коррозионному растрескиванию. Эти данные свидетельствуют о тесной связи склонности стали к коррозионному растрескиванию с содержанием легирующих элементов. [c.83]

        В качестве легирующих элементов применяют хром, молибден, никель, вольфрам, ванадий, титан, бор, алюминий, медь, кобальт, кремний, марганец, ниобий и некоторые другие. По легирующим элементам сталь и получает свое название молибденовая, хромоникелевая, хромомолибденованадиевая и т. д. [c.24]

        Большое значение имеет выбор материала для изготовления реактора трубчатой печи. Этот материал должен обладать необходимой механической прочностью в условиях крекинга он не должен влиять каталитически на процесс и, что особенно важно, не ускорять образование кокса. При высокой температуре железо и никель вызывают коксообразование. При наиболее, жестких условиях обычно применяют стали с высоким содержанием хрома (25%) в случае более умеренных режимов используют специальные стали, как, например, аустенитную или молибденовую. [c.95]

        Преимущества фаолигга по сравнению с цветными и черными металлами очевидны, так как за исключением некоторых специальных марок кислотоупорной стали (хром-никелевых и хром-никель-молибденовых) они не стойки к соляной, разбавленной серной, уксусной и другим кислотам. Однако значительно большая прочность металлов и их термостойкость являются их преимушеством перед фаолитом. Преимущество же фаолита — его малая теплопроводность однако во многих случаях это является и недостатком (там, где требуется быстрый отвод тепла). Температурные пределы химической стойкости этого материала невелики. Необходимо иметь в виду, что температура 120—150° предельная для стойкости фаолита к действию химических реагентов. Существенной является относительная простота изготовления крупных изделий из фаолита и несложность технологического процесса. Его недостаток — трудность механизации этого процесса. [c.460]

        Катализатором служит активированный буковый уголь, тщательно просушенный. С целью длительного сохранения высокой активности катализатора рекомендуется применять хлорциан, также тщательно высушенный и не содержащий примесей синильной кислоты. Реактор (трубчатую печь) изготовляют из хромо-никелевой или хромо-никель-молибденовой стали. При подаче хлорциана 109 л/ч на 1 л катализатора производительность последнего составляет 290 г цианурхлорида в час. Выходящие из реакционной печи пары цианурхлорида поступают в специальную алюминиевую камеру, где кристаллизуются. Для поддержания активности катализатора часть его периодически выгружают и пополняют реактор свежим высокоактивным углем. Выход цианурхлорида 96,7 % чистота 99,9%. Предлагалось также проводить полимеризацию 1 N, пропуская его пары при 200—500 °С через расплав смеси Al lg и Fe lj с добавкой галогенида металла I или II группы. Выход цианурхлорида 98%. [c.141]

        Выделение карбамида из плава и частичный возврат аммиака в цикл осуществляются в системе двухступенчатой дистилляции. При этом отгоняется почти весь избыточный аммиак. Карбамат аммония частично разлагается, что приводит к загрязнению газовой фазы двуокисью углерода. Во избежание коррозионно-эрозионного износа оборудования (конденсаторов и насосов) газообразный аммнак очищается от СОг и сушится в колонне фракционирования, орошаемых концентрированной аммиачной водой ( 90% NNs). после чего сл ижается. Первый по ходу конденсатор аммиака имеет трубки из хром-никель-молибденовой стали, так как в газовой фазе содержится 0,02—0,05% СОг. Этим же обусловлена необходимость раздельного возврата в колонну синтеза циркуляционного и свежего аммиака. [c.123]

        Для изготовления машин, аппаратов, трубопроводов, запорной и крепежной арматуры, работающих под высоким давлением, применяют высококачественные легированные стали, содержащие хром, никель, вольфрам, ванадий, титан и др. Для аппаратов, работающих под высоким давлением, применяют в основном хромоникелевую, хромованадиевую и молибденовую стали. Хромоникелевые стали (20ХН, 50ХН, 12ХНЗ и др.) идут на изготовление аппаратов и машин, работающих под высоким давлением и при высоких температурах (колонны синтеза и их насадки, цилиндры высокого давления газовых компрессоров и др.). Эти стали обладают повышенной стойкостью к водородной и карбонильной коррозии. [c.93]

        Для улучшения экономики процесса предпринимаются попытки уменьшить напряжение на электролизере за счет снижения катодного потенциала. Снизить катодный потенциал в производстве хлоратов можно в результате обработки графитового катода солями некоторых металлов, например кобальта, лголибдена, хрома или ванадия [131, 134], на которых перенапряжение водорода меньше, чем на графите. В биполярном электроде обрабатывают его катодную сторону [134, 135]. Эффект снижения напряжения на биполярном электролизере, достигаемый при обработке графитового катода солями металлов, характеризуется кривыми, показанными на рис. 16 [134]. Значительный эффект снижения перенапряжения водорода достигался на хромовом, молибденовом и кобальтовом катодах, на катодах из хромо-никелевой стали (18% Сг, 8% Ni) [134], а также из стали, легированной хромом, никелем, молибденом и титаном [122]. [c.33]

        Газовой резке подвергаются углеродистые стали, содержащие углерода до 0,7% кремнистые стали, содержащие до 4% кремния хромистые стали, содержащие не более 2—3% хрома никелевые стали, содержащие никеля до 20—25% (углерода не более 0,5%) сталь Гадфильда (13% Мп и 1,3% С) молибденовые стали, содержащие молибдена до 1—1,5%, и т. д. [c.558]

        В разделе 1 уже отмечалось, что процесс крекинга требует большой затраты тепла даже для реакции разрьша цепи требуется приблизительно 18 ккал1моль расщепляемого углеводорода. Поскольку продолжительность пребывания углеводородов в зоне крекинга обычно мала (особенно при высокотемпературном процессе), возникает задача быстрой передачи тепла при высокой температуре от одного газа (топочные газы ) к другому (пары углеводородов). С такой проблемой часто сталкиваются при проектировании аппаратуры, применяющейся в промышленности химической переработки нефти. Большинство крекинг-печей состоит из секций узких трубок, через которые с большой скоростью проходят пары углеводородов эти трубки нагреваются за счет радиационного излучения топочных газов. Крекинг под давлением имеет два эксплуатационных преимущества сравнительно меньшие размеры крекинг-установки для данной производительности и лучшая теплопередача. Выход газа при применении высоких давлений сравнительно меньше. Второй задачей является выбор материала для изготовления реактора коекинг-печи. Этот материал должен обладать необходимой механической прочностью в условиях проведения крекинга он не должен влиять каталитически на процесс, в особенности не должен ускорять образование нефтяного кокса. При высокой температуре железо и никель вызывают отложение кокса на стенках реактора. В наиболее жестких условиях обычно применяют хромоникелевые стали (25% хрома и 18% никеля) в случае более умеренных режимов используют ряд легированных сталей, например аустенитные и молибденовые. С двумя новыми методами разрешения проблем, связанных с теплопередачей и выбором конструктивных материалов, читатель ознакомится позже, при описании дегидрирования этана. В этом случае для достижения высокой степени превращения процесс проводят при температуре около 900° (см. стр. 119). [c.113]

        На нефтеперерабатывающих заводах легированные стали применяются для аппаратуры, работающем при высоких температурах, а также для аппаратов, предназначенных для переработки сернистых нефтей и нефтепродуктов. Хромо-молибденовую сталь (Х5М), содержаш,ую 4—6% xpo2 Ia и около 0,5% молибдена, применяют для изготовления труб для крекинг-печей, корпусов горячих насосов, печных двойников и т. д., из нержавеющих сталей марки ЭЯ1Т, содержащих до 20% хрома, до 10% никеля и 0,4—0,8% титана, изготовляют отдельные части оборудования и аппаратов, работающих в весьма агрессивной среде, а также при высоких температурах (550—750°), например детали установок каталитического крекинга, аппаратуру катализаторных фабрик, футеровку для защиты аппаратов от коррозии при переработке сернистых нефтей, змеевики пирогенных трубчатых установок и др. [c.173]

        Никель, хром, вольфрам, молибден, ванадий, кобальт, титан и некоторые другие металлы вводятся в сталь для придания ей особых свойств. По химическому составу сталь подразделяют на углеродистую и легированную (хромистая, молибденовая, хромоникельвольфрамовая и другие). По назначению сталь делится на три класса конструкционная, инструментальная и сталь с особыми свойствами (нержавеющая, кислотоупорная, жароупорная, жаропрочная и другие). [c.401]

        Молибден и вольфрам, так же как хром, ванадий и некоторые другие элементы, имеют кристаллическую решетку а-желе-за, т. е. пространственноцентрированный куб. Радиусы атомов этих элементов близки между собой и мало отличаются от радиуса атома железа. Эти два фактора — общность кристаллической решетки и близость радиусов — обусловливают хорошую растворимость молибдена и вольфрама, хрома, ванадия и некоторых других подобных им по величине атома и строению решетки элементов в а-железе и, следовательно, высокую легирующую способность этих металлов. Сталь, содержащая молибден, обладает, подобно вольфрамсодержащей стали, хорошей способностью воспринимать термическую обработку, отличается особой прочностью при высоких температурах и высоким сопротивлением ползучести (крипу). Однако аналогию между молибденом и вольфрамом нельзя распространять на все свойства этих металлов как легирующих добавок к стали так, например, на повышении прочности стали молибден сказывается более резко, чем вольфрам, и может применяться поэтому в некоторых случаях для замены более дефицитного вольфрама, причем 0,3% молибдена могут заменить 1 % вольфрама. Молибденсодержащая сталь применяется в оборонной промышленности, для ответственных деталей различного оборудования, для инструментов И других целей. Первые танки, появившиеся на французском фронте во время первой мировой войны, легко пробивались це-мецкихми снарядами, несмотря на 76-мм броню из марганцовистой стали. Применение стали с содержанием никеля и молибдена позволило снизить толщину брони до 25 мм и сделать ее одновременно неуязвимой для бронебойных снарядов. Подобное улучшение свойств стали связано с тем, что молибден значительно больше, чем вольфрам и хром, задерживает рост зерна стали при нагреве и сообщает ей тонкую однородную структуру ( сорбитовую ). Кроме того, молибденовым сталям почти не свойственна так называемая хрупкость после отпуска , наблюдаемая у всех легированных сталей, кроме никелевой. Это обстоятельство позволяет получать термически обработанную сталь без внутренних напряжений, т. е. с повышенной пластичностью. [c.97]

        Опыты проводились на полированных пластинках из углеродистой, хромистой, хромоникелетитановой и хромоникеле-молибденовой сталей, никеля, хрома, алюминия, свинца, олова, меди, бронзы, латуни, титана, а также серебра, поскольку последнее часто применяется в виде контактов в релей в других электротехнических устройствах. [c.162]

        Вследствие корродирующего действия каталитических растворов на большинство металлов, аппаратура для этого процесса конструируется из специальных материалов, как, напри.мер, железосилициевые сплавы [84] применяется также освинцовьшание аппаратов [85, 86] и никель-хром-молибденовые стали [87]. [c.187]

    chem21.info


    Смотрите также