1. Общая характеристика оксидов. Амфотерный оксид хрома
Амфотерный оксид Википедия
Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.
Содержание
- 1 Химические свойства
- 2 Получение
- 3 Примеры
- 4 См. также
- 5 Примечания
Химические свойства
- Не взаимодействуют с водой[1];
- Взаимодействуют с кислотами с образованием соли и воды (проявляют осно́вные свойства)[1]:
- Взаимодействуют с щелочами с образованием соли и воды (проявляют кислотные свойства)[1]:
- При реакции с щелочами в растворе образуется комплексная соль[источник не указан 229 дней]:
- Взаимодействуют с основными оксидами[2]:
- Взаимодействуют с кислотными оксидами[2]:
- Взаимодействуют друг с другом[2]:
Получение
- Окисление кислородом металлов[3]:
- Разложение гидроксидов[3]:
Примеры
Примеры амфотерных оксидов[3][4][5]:
- Оксид цинка ZnO{\displaystyle ZnO};
- Оксид бериллия BeO{\displaystyle BeO};
- Оксид свинца(II) PbO{\displaystyle PbO};
- Оксид олова(II) SnO{\displaystyle SnO};
- Оксид алюминия Al2O3{\displaystyle Al_{2}O_{3}};
- Оксид хрома(III) Cr2O3{\displaystyle Cr_{2}O_{3}};
- Оксид железа (III) Fe2O3{\displaystyle Fe_{2}O_{3}};
- Оксид ванадия(V) V2O5{\displaystyle V_{2}O_{5}}.
См. также
- Оксиды
- Солеобразующие оксиды
- Несолеобразующие оксиды
- Амфотерные гидроксиды
Примечания
- ↑ 1 2 3 Г.М. Чернобельская, И.Н. Чертков. Химия. — Москва: Дрофа, 2007. — С. 42. — 733 с. — ISBN 978-5-358-03176-0.
- ↑ 1 2 3 В.В. Еремин, А.А. Дроздов. Химия. Методическое пособие. — Москва: Дрофа, 2012. — С. 211. — 270 с. — ISBN 978-5-358-10961-2.
- ↑ 1 2 3 В.И. Федорченко и др. Общая химия. Часть 1.. — Оренбург: ГОУ ОГУ, 2011.
- ↑ О.В. Мешкова. Химия. — Москва: Эксмо, 2017. — С. 189. — 368 с. — ISBN 978-5-699-95854-2.
- ↑ Константы неорганических веществ / под ред. Р.А. Лидина. — Москва: Дрофа, 2008. — С. 6. — 685 с. — ISBN 978-5-358-04347-3.
wikiredia.ru
Химические свойства амфотерных оксидов | CHEMEGE.RU
Перед изучением этого раздела рекомендую изучить следующие темы:
Классификация неорганических веществ
Классификация оксидов, способы их получения
Химические свойства основных оксидов
Химические свойства кислотных оксидов
Амфотерные оксиды проявляют свойства и основных, и кислотных. От основных отличаются только тем, что могут взаимодействовать с растворами и расплавами щелочей и с расплавами основных оксидов, которым соответствуют щелочи.
1. Амфотерные оксиды взаимодействуют с кислотами и кислотными оксидами.
При этом по правилу «хотя бы один из реагентов должен быть сильным» амфотерные оксиды взаимодействуют, как правило, с сильными и средними кислотами и их оксидами.
Например, оксид алюминия взаимодействует с соляной кислотой, оксидом серы (VI), но не взаимодействует с углекислым газом и кремниевой кислотой:
амфотерный оксид + кислота = соль + вода
Al2O3 + 6HCl = 2AlCl3 + 3h3O
амфотерный оксид + кислотный оксид = соль
Al2O3 + 3SO3 = Al2(SO4)3
Al2O3 + CO2 ≠
Al2O3 + h3SiO3 ≠
2. Амфотерные оксиды не взаимодействуют с водой.
Оксиды взаимодействуют с водой, только когда им соответствуют растворимые гидроксиды, а все амфотерные гидроксиды — нерастворимые.
3. Амфотерные оксиды взаимодействуют с щелочами.
При этом механизм реакции и продукты различаются в зависимости от условий проведения процесса — в растворе или расплаве.
В растворе образуются комплексные соли, в расплаве — обычные соли.
Формулы комплексных гидроксосолей составляем по схеме:
- Сначала записываем центральный атом-комплекообразователь (это, как правило, амфотерный металл).
- Затем дописываем к центральному атому лиганды — гидроксогруппы. Число лигандов в 2 раза больше степени окисления центрального атома (исключение — комплекс алюминия, у него, как правило, 4 лиганда-гидроксогруппы).
- Заключаем центральный атом и его лиганды в квадратные скобки, рассчитываем суммарный заряд комплексного иона.
- Дописываем необходимое количество внешних ионов. В случае гидроксокомплексов это — ионы основного металла.
Основные продукты взаимодействия соединений амфотерных металлов со щелочами сведем в таблицу.
Металлы | В расплаве щелочи | В растворе щелочи |
Степень окисле-ния +2 (Zn, Sn, Be) | Соль состава X2YO2*. Например: Na2ZnO2 | Комплексная соль состава Х2[Y(OH)4]*. Например: Na2[Zn(OH)4] |
Степень окисле-ния +3 (Al, Cr, Fe) | Соль состава XYO2 (мета-форма) или X3YO3 (орто-форма). Например: NaAlO2 или Na3AlO3 | Комплексная соль состава Х3[Y(OH)6]* или реже Х[Y(OH)4]. Например: Na3[Al(OH)6] или Na[Al(OH)4] |
* здесь Х — щелочной металл, Y — амфотерный металл.
Исключение — железо не образует гидроксокомплексы в растворе щелочи!
Например:
Al2O3 + 2NaOH = 2NaAlO2 + h3O
амфотерный оксид + щелочь (раствор) = комплексная соль
ZnO + 2NaOH + h3O = Na2[Zn(OH)4]
4. Амфотерные оксиды взаимодействуют с основными оксидами.
При этом взаимодействие возможно только с основными оксидами, которым соответствуют щелочи и только в расплаве. В растворе основные оксиды взаимодействуют с водой с образованием щелочей.
амфотерный оксид + основный оксид = соль + вода
Al2O3 + Na2O = 2NaAlO2
5. Окислительные и восстановительнеы свойства.
Амфотерные оксиды способны выступать и как окислители, и как восстановители по тем же закономерностям и принципам, что и основные оксиды. Окислительно-восстановительные свойства подробно рассмотрены в статье про основные оксиды.
Поделиться ссылкой:
chemege.ru
Амфотерные оксиды Википедия
Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.
Содержание
- 1 Химические свойства
- 2 Получение
- 3 Примеры
- 4 См. также
- 5 Примечания
Химические свойства[ | код]
- Не взаимодействуют с водой[1];
- Взаимодействуют с кислотами с образованием соли и воды (проявляют осно́вные свойства)[1]:
- Взаимодействуют с щелочами с образованием соли и воды (проявляют кислотные свойства)[1]:
- При реакции с щелочами в растворе образуется комплексная соль[источник не указан 229 дней]:
- Взаимодействуют с основными оксидами[2]:
- Взаимодействуют с кислотными оксидами[2]:
- Взаимодействуют друг с другом[2]:
Получение[ | код]
- Окисление кислородом металлов[3]:
ru-wiki.ru
Общая характеристика оксидов — урок. Химия, 8–9 класс.
Оксидами называют сложные вещества, состоящие из двух химических элементов, одним из которых является кислород.
В оксидах химический элемент кислород находится в степени окисления \(–2\).
Оксиды — весьма распространённый в природе класс соединений. Они находятся в воздухе, распространены в гидросфере и литосфере.
Примеры оксидов:
h3O — оксид водорода, или вода.
На Земле вода встречается во всех трёх агрегатных состояниях — газообразном (водяной пар), жидком и твёрдом (лёд, снег). На долю воды также приходится большая часть массы живых организмов.
CO2 — оксид углерода(\(IV\)), двуокись углерода или углекислый газ.
Как вы уже знаете, углекислый газ нужен зелёным растениям для фотосинтеза. Оксид углерода(\(IV\)), находящийся в твёрдом агрегатном состоянии, называют сухим льдом.
CO — оксид углерода(\(II\)), угарный газ.
Примесь этого очень ядовитого вещества может содержаться в воздухе. Основным источником загрязнения является транспорт. Угарный газ образуется в результате неполного сгорания топлива. Этот же оксид образуется и во время пожаров.
Fe2O3 — оксид железа(\(III\)).
В природе этот оксид встречается в виде минерала гематита. Он составляет основу руды, называемой красным железняком.
SiO2 — оксид кремния.
В природе встречается в виде кварцевого песка, кварца, горного хрусталя.
Классификация оксидов
Оксиды принято группировать в зависимости от их способности реагировать с кислотами и основаниями. Различают три важнейшие группы оксидов: основные, кислотные и амфотерные. Их относят к солеобразующим оксидам. Существуют также оксиды, которые называют несолеобразующими.
- Основные оксиды.
Основными называют оксиды, которые реагируют с кислотами, образуя соль и воду.
Основные оксиды образуются химическими элементами — металлами. Как правило, степень окисления элемента, образующего основной оксид, является невысокой: \(+1\) или \(+2\).Примеры основных оксидов:
оксид натрия Na2O, оксид меди(\(II\)) CuO.
- Кислотные оксиды.
Кислотными называют оксиды, которые реагируют с основаниями, образуя соль и воду.
Кислотные оксиды образуют элементы — неметаллы. Например, оксид серы(\(VI\)) SO3, оксид азота(\(IV\)) NO2.
Также кислотные оксиды могут быть образованы металлическими химическими элементами, в которых те проявляют степень окисления от \(+5\) до \(+8\). Например, оксид хрома(\(VI\)) CrO3 и оксид марганца(\(VII\)) Mn2O7.
- Амфотерные оксиды.
Амфотерными называют оксиды, которые реагируют как с кислотами, так и с основаниями, образуя соли.
Амфотерные свойства проявляет оксид цинка ZnO, оксид алюминия Al2O3, оксид бериллия BeO.
Если металлический элемент имеет переменную валентность (проявляет несколько степеней окисления), то из всех образуемых им оксидов амфотерными свойствами обладают те, в которых этот элемент имеет промежуточную валентность (промежуточную степень окисления).
Например, хром может быть двухвалентен, трёхвалентен и шестивалентен.
Амфотерными свойствами обладает именно оксид хрома (\(III\)) Cr2O3.
- Несолеобразующие оксиды.
Несолеобразующими называют оксиды, которые при обычных условиях не взаимодействуют ни с кислотами, ни с основаниями.
Примеры несолеобразующих оксидов: оксид углерода(\(II\)), или угарный газ CO, оксид азота(\(I\)), или веселящий газ N2O, и оксид азота(\(II\)) NO.
Номенклатура оксидов
В соответствии с номенклатурой ИЮПАК, оксиды называют словом «оксид», после которого следует наименование химического элемента в родительном падеже.
Например: Na2O — оксид натрия, Al2O3 — оксид алюминия.Если элемент, образующий оксид, имеет переменную степень окисления (или валентность), то в названии оксида указывается его степень окисления римской цифрой в скобках сразу после названия (без пробела).
Например: Cu2O — оксид меди(\(I\)), CuO — оксид меди(\(II\)), FeO — оксид железа(\(II\)), Fe2O3 — оксид железа(\(III\)), Cl2O7 — оксид хлора(\(VII\)).
Часто используют и другие наименования оксидов по числу атомов кислорода: если оксид содержит только один атом кислорода, то его называют монооксидом, или моноокисью, если два — диоксидом, или двуокисью, если три — то триоксидом, или трёхокисью и т. д.
Например: монооксид углерода CO, диоксид углерода CO2, триоксид серы SO3.
Также распространены исторически сложившиеся (тривиальные) названия оксидов, например, угарный газ CO, серный ангидрид SO3 и т. д.
www.yaklass.ru
Амфотерные оксиды и гидроксиды. Детальные поурочные планы
Дополнительные сочиненияЭто занятие мы посвятим изучению амфотерных оксидов и гидроксидов. На нем мы поговорим о веществах, имеющих амфотерные (двойственные) свойства, и особенностях химических реакций, которые протекают с ними. Но сначала повторим, с чем реагируют кислотные и основные оксиды. После рассмотрим примеры амфотерных оксидов и гидроксидов.
Тема: Введение
Урок: Амфотерные оксиды и гидроксиды
1. Характеристика амфотерных соединений
Рис. 1. Вещества, проявляющие амфотерные свойства
Основные оксиды реагируют с кислотными оксидами, а кислотные оксиды – с основаниями. Но существуют вещества, оксиды и гидроксиды которых в зависимости от условий, будут реагировать и с кислотами и с основаниями. Такие свойства называются амфотерными.
Вещества, обладающие амфотерными свойствами приведены Рис.1.. Это соединения, образованные бериллием, цинком, хромом, мышьяком, алюминием, германием, свинцом, марганцем, железом, оловом.
Примеры их амфотерных оксидов приведены в таблице 1.
Амфотерные оксиды | |
Формула | Названия |
BeO | Оксид берия (II) |
ZnO | Оксид цинка |
Al2O3 | Оксид алюминия |
Cr2O3 | Оксид хрома III) |
As2O3 | Оксид мышьяка (III) |
GeO | Оксид германия (II) |
PbO2 | Оксид свинца (IV) |
MnO2 | Оксид марганца (IV) |
Fe2O3 | Оксид железа (III) |
SnO | Оксид олова (II) |
2. Химические свойства амфотерных оксидов цинка и алюминия
Рассмотрим амфотерные свойства оксидов цинка и алюминия. На примере их взаимодействия с основными и кислотными оксидами, с кислотой и щелочью.
- Взаимодействие с основными оксидами и основаниями:
ZnO + Na2O → Na2ZnO2 (цинкат натрия). Оксид цинка ведет себя как кислотный.
ZnO + 2NaOH → Na2ZnO2+ h3O
- Взаимодействие с кислотными оксидами и кислотами. Проявляет свойства основного оксида.
3ZnO + P2O5 → Zn3(PO4)2 (фосфат цинка)
ZnO + 2HCl → ZnCl2 + h3O
Аналогично оксиду цинка ведет себя и оксид алюминия:
- Взаимодействие с основными оксидами и основаниями:
Al2O3 + Na2O → 2NaAlO2 (метаалюминат натрия). Оксид алюминия ведет себя как кислотный.
Al2O3 + 2NaOH → 2NaAlO2+ h3O
- Взаимодействие с кислотными оксидами и кислотами. Проявляет свойства основного оксида.
Al2O3 + P2O5 → 2AlPO4(фосфат алюминия)
Al2O3 + 6HCl → 2AlCl3 + 3h3O
Рассмотренные реакции происходят при нагревании, при сплавлении. Если взять растворы веществ, то реакции пойдут несколько иначе.
3. Химические свойства амфотерных оксидов цинка и алюминия в растворах
ZnO + 2NaOH + h3O → Na2[Zn(OH)4] (тетрагидроксоцинкат натрия) Al2O3 + 2NaOH + 3h3O → 2Na[Al(OH)4] (тетрагидроксоалюминат натрия)
В результате этих реакций получаются соли, которые относятся к комплексным.
Рис. 2. Минералы на основе оксида алюминия
Оксид алюминия.
Оксид алюминия чрезвычайно распространенное на Земле вещество. Он составляет основу глины, бокситов, корунда и других минералов. Рис.2.
В результате взаимодействия этих веществ с серной кислотой, получается сульфат цинка или сульфат алюминия.
ZnO + h3SO4 → ZnSO4 + h3O
Al2O3 + 3h3SO4→ Al2 (SO4)3 + 3h3O
4. Химические свойства амфотерных гидроксидов цинка и алюминия
Реакции гидроксидов цинка и алюминия с оксидом натрия происходят при сплавлении, потому что эти гидроксиды твердые и не входят в состав растворов.
Zn(OН)2 +2 Na2O → Na2ZnO2 + Н2О соль называется цинкат натрия.
2Al(OН)3 + Na2O → 2NaAlO2 + 3Н2О соль называется метаалюминат натрия.
Рис. 3. Гидроксид алюминия
Реакции амфотерных оснований со щелочами характеризует их кислотные свойства. Данные реакции можно проводить как при сплавлении твердых веществ, так и в растворах. Но при этом получатся разные вещества, т. е. продукты реакции зависят от условий проведения реакции: в расплаве или в растворе.
Zn(OH)2 + 2NaOH тв. Na2ZnO2 + 2Н2О
Al(OH)3 + NaOH тв. NaAlO2+ 2h3O
Zn(OH)2 + NaOH раствор → Na2[Zn(OH)4] Al(OH)3 + NaOH раствор → Na[Al(OH)4] тетрагидроксоалюминат натрия Al(OH)3 + 3NaOH раствор→ Na3[Al(OH)6] гексагидроксоалюминат натрия.
Получается тетрагидроксоалюминат натрия или гексагидроксоалюминат натрия зависит от того, сколько щелочи мы взяли. В последней реакции щелочи взято много и образуется гексагидроксоалюминат натрия.
5. Химические свойства амфотерных цинка и алюминия
Элементы, которые образуют амфотерные соединения, могут сами проявлять амфотерные свойства.
Zn + 2NaOH + 2h3O → Na2[Zn(OH)4] + Н2&
dp-adilet.kz
Амфотерные оксиды - Википедия
Материал из Википедии — свободной энциклопедии
Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от III до IV, за исключением ZnO, BeO, SnO, PbO.
Характерные реакции[ | ]
Амфотерные оксиды реагируют с сильными кислотами, образуя соли этих кислот. Такие реакции являются проявлением основных свойств амфотерных оксидов, например:
ZnO+h3SO4→ZnSO4+h3O{\displaystyle {\mathsf {ZnO+H_{2}SO_{4}\rightarrow ZnSO_{4}+H_{2}O}}}Они также реагируют с сильными щелочами, проявляя этим свои кислотные свойства. При реакции с щелочами в расплаве образуется обычная средняя соль:
ZnO+2NaOH→otNa2ZnO2+h3O{\displaystyle {\mathsf {ZnO+2NaOH{\xrightarrow[{}]{^{o}t}}Na_{2}ZnO_{2}+H_{2}O}}}При реакции с щелочами в растворе образуется комплексная соль:
ZnO+2NaOH+h3O→Na2[Zn(OH)4]{\displaystyle {\mathsf {ZnO+2NaOH+H_{2}O\rightarrow Na_{2}[Zn(OH)_{4}]}}}Амфотерные оксиды обычно при нормальных условиях не растворяются в воде и не реагируют с ней.
Примеры[ | ]
См. также[ | ]
encyclopaedia.bid