• Главная

Влияние экологического фактора на организм, концепция лимитирующих факторов. Продвижение вида на север может лимитироваться


Взаимодействие экологических факторов. Что такое ограничивающий фактор

Экологические факторы воздействуют на живой организм одновременно и совместно. При этом действие одного фактора зависит от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействия факторов. Например, жару или мороз легче переносить в сухом, а не во влажном воздухе. Скорость испарения воды листьями растения — транспирация — значительно выше при высокой температуре воздуха с ветром, чем в безветренную погоду.В некоторых случаях недостаток одного фактора частично компенсируется усилением другого. Явление частичной взаимозаменяемости действия экологических факторов называется эффектом компенсации. Например, увядание растений можно приостановить как путем увеличения количества влаги в почве, так и снижением температуры воздуха, уменьшающего транспирацию; в пустынях недостаток осадков в определенной мере восполняется повышенной относительной влажностью воздуха в ночное время; в Арктике продолжительный световой день летом компенсирует недостаток тепла.

Вместе с тем ни один из необходимых организму экологических факторов не может быть полностью заменен другим. Отсутствие света делает жизнь растений невозможной, несмотря на самые благоприятные сочетания других условий. Поэтому если значение хотя бы одного из необходимых экологических факторов приближается к критическим величинам или выходит за их пределы (ниже минимума или выше максимума), то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Предотвратить это можно только воздействием на ограничивающий фактор.

Природа ограничивающих факторов может быть различной. Например, под пологом буковых лесов, несмотря на оптимальный тепловой режим, повышенное содержание диоксида углерода и богатые почвы, происходит угнетение травянистых растений в связи с недостатком света. Ограничивающие факторы среды определяют также географический ареал вида. Так, продвижение вида на север может лимитироваться недостатком тепла, а в районы пустынь и сухих степей — недостатком влаги или слишком высокими температурами.

Фактором, ограничивающим распространение организмов, могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для цветковых растений.

Выявление ограничивающих факторов и устранение их действия, иными словами, оптимизация среды обитания живых организмов составляет важную практическую цель в повышении урожайности сельскохозяйственных культур и продуктивности домашних животных.

jbio.ru

1.3 Значение и практическое применение правила ограничивающих факторов. Лимитирующие факторы. Адаптация организмов к факторам

Похожие главы из других работ:

Анализ проблемы продления механизмов Киотского протокола после окончания первого периода обязательств

1.4 Практическое значение и новизна работы

Новизна: рассматриваемая в данной работе проблема является достаточно новой и требует глубокого всестороннего изучения...

Екологічні основи природокористування

2.2 Екологічні закони і правила

При перетворенні природи необхідно керуватися екологічними законами і правилами. Розглянемо деякі з них...

Мероприятия по защите экологии и рекомендации по их развитию в регионе

3.2 Практическое применение данных мероприятий

Для контроля влияния вредных факторов, влияющих на окружающую среду, должен вестись непрерывный мониторинг, осуществляемый испытательной лабораторией...

Надежность биотехнологических систем и охрана окружающей среды

1.1 Правила GLP

Правила надлежащей лабораторной практики (GLP) формально определяются как система качества проведения неклинических исследований. Они распространяются на работу фармакологических...

Надежность биотехнологических систем и охрана окружающей среды

1.3 Правила GMP

Если препарат проходит все необходимые доклинические испытания по системе GLP и клиническую проверку, то он разрешатся к промышленному выпуску. На стадии производства действуют правила GMP (Good manufacturing practice)...

Надежность биотехнологических систем и охрана окружающей среды

1.4 Правила оптовой торговли GDP и Правила надлежащей аптечной практики GPP

Существуют ещё два стандарта, регулирующие деятельность по оптовой и розничной торговле лекарственными средствами - Правила оптовой торговли GDP и Правила надлежащей аптечной практики GPP. Аналог GDP - ОСТ 915000.05...

Основные направления эколого-экономической политики развитых стран мира

Раздел 3. Практическое задание

Задача 1 Определить годовой экономический ущерб от загрязнения р. Днепр промышленным предприятием, если годовой объем сточных вод составляет 1238300 м3 с концентрацией нефтепродуктов 55 мг/л, твердых веществ 90 мг/л...

Основы экономики природопользования

8. Практическое задание

Задача 1. Рассчитать прирост прибыли от предотвращения загрязнения окружающей среды и преждевременного износа основных фондов. Производительность работы оборудования до внедрения мероприятий, ч 3400 Среднегодовая стоимость оборудования, млн...

Разбор некоторых аспектов экологической доктрины Российской Федерации

Глава 2. Мониторинг экологической обстановки в Российской Федерации, его необходимость и практическое применение

В экологической доктрине РФ экологическому мониторингу уделяется большое внимание, по ней основной задачей является «обеспечение государственных и муниципальных органов...

Теорема Коуза и борьба с загрязнением окружающей среды

2. Практическое применение теоремы Коуза в борьбе с загрязнением окружающей среды

...

Физико-химические методы очистки сточных вод

2. Анализ реализации исследуемой технологии на выбранном производственном участке. Действие опасных факторов и вредных факторов на рабочем месте

...

Экологическая политика и природоохранная деятельность России

3. Практическое задание

Во--первых, в первой части, мы дали определение понятию «антропогенное воздействие». Во--вторых, попытались классифицировать их. Т. к. классификаций антропогенных воздействий очень много и нет одной официальной...

Экологическая политика и природоохранная деятельность России

3. Практическое задание

...

Экологический потенциал Республики Беларусь

3 Практическое задание

Задание 8 Модель экономики описана системой уравнений: С = 1000 + 0,6Y, G = 1200 - 0,1 Y; I = 1100; Т = 800 + 0,2Y; Xn = 300 + 0,1Y. Найдите равновесный объем производства. Какой разрыв будет в экономике, если потенциальный объем производства равен 4500 р...

Экосистемы

5. Экологическое значение абиотических факторов

В разных условиях среды биологические процессы протекают с различной скоростью. Например, рост многих растений зависит от концентрации различных веществ (воды, углекислого газа, азота, ионов водорода). На примере температуры видно...

eco.bobrodobro.ru

Влияние экологического фактора на организм, концепция лимитирующих факторов.

Реакция организмов на влияние абиотических факторов. Воздействие экологических факторов на живой организм весьма многообразно. Одни факторы оказывают более сильное влияние, другие действуют слабее; одни влияют на все стороны жизни, другие — на определенный жизненный процесс. Тем не менее в характере их воздействия на организм и в ответных реакциях живых существ можно выявить ряд общих закономерностей, которые укладываются в некоторую общую схему действия экологического фактора на жизнедеятельность организма (рис. 14.1).

На рис. 14.1 по оси абсцисс отложена интенсивность (или «доза») фактора (например, температура, освещенность, концентрация солей в почвенном растворе, рН или влажность почвы и х д.), а по оси ординат — реакция организма на воздействие экологического фактора в его количественном выражении (например, интенсивность фотосинтеза, дыхания, скорость роста, продуктивность, численность особей на единицу площади и т. д.), т е. степень благотворности фактора.

Диапазон действия экологического фактора ограничен соответствующими крайними пороговыми значениями (точки минимума и максимума), при которых еще возможно существование организма. Эти точки называются нижним и верхним пределами выносливости (толерантности) живых существ по отношению к конкретному фактору среды.

Рис. 14.1. Схема действия экологического фактора на жизнедеятельность организмов: 1, 2. 3 — точки минимума, оптимума и максимума соответственно; I, II, III—зоны пессимума, нормы и оптимума соответственно.

Точка 2 на оси абсцисс, соответствующая наилучшим показателям жизнедеятельности организма, означает наиболее благоприятную для организма величину воздействующего фактора — это точка оптимума. Для большинства организмов определить оптимальное значение фактора с достаточной точностью зачастую трудно, поэтому принято говорить о зоне оптимума.Крайние участки кривой, выражающие состояние угнетения организмов при резком недостатке или избытке фактора, называютобластями пессимума или стресса. Вблизи критических точек лежат сублетальные величины фактора, а за пределами зоны выживания —летальные.

Подобная закономерность реакции организмов на воздействие экологических факторов позволяет рассматривать ее какфундаментальный биологический принцип: для каждого вида растений и животных существует оптимум, зона нормальной жизнедеятельности, пессимальные зоны и пределы выносливости по отношению к каждому фактору среды.

Разные виды живых организмов заметно отличаются друг от друга как по положению оптимума, так и по пределам выносливости. Например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне около 80°С (от +30 до -55°С), некоторые тепловодные рачки выдерживают изменения температуры воды в интервале не более 6°С (от 23 до 29°С), нитчатая цианобактерия осциллатория, живущая на острове Ява в воде с температурой 64°С, погибает при 68°С уже через 5—10 мин. Точно так же одни луговые травы предпочитают почвы с довольно узким диапазоном кислотности — при рН = 3,5—4,5 (например, вереск обыкновенный, белоус торчащий, щавель малый служат индикаторами кислых почв), другие хорошо растут при широком диапазоне рН — от сильнокислого до щелочного (например, сосна обыкновенная). В связи с этим организмы, для существования которых необходимы строго определенные, относительно постоянные условия среды, называют стенобионтными (греч. stenos — узкий, bion — живущий), а те, которые живут в широком диапазоне изменчивости условий среды, —эврибионтными (греч. eurys — широкий). При этом организмы одного и того же вида могут иметь узкую амплитуду по отношению к одному фак тору и широкую — к другому (например, приспособленность к узкому диапазону температур и широкому диапазону солености воды). Кроме того, одна и та же доза фактора может быть оптимальной для одного вида, пессимальной для другого и выходить за пределы выносливости для третьего.

Способность организмов адаптироваться к определенному диапазону изменчивости факторов среды называют экологической пластичностью. Эта особенность является одним из важнейших свойств всего живого: регулируя свою жизнедеятельность в соответствии с изменениями условий среды, организмы приобретают возможность выживать и оставлять потомство. Значит, эврибионтные организмы явлются эколог ически наиболее пластичными, что обеспечивает их широкое распространение, а стенобионтные, напротив, отличаются слабой экологической пластичностью и, как следствие, обычно имеют ограниченные ареалы распространения.

Взаимодействие экологических факторов. Ограничивающий фактор. Экологические факторы воздействуют на живой организм совместно и одновременно. При этом действие одного фактора зависит от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействие факторов. Например, жару или мороз легче переносить при сухом, а не при влажном воздухе. Скорость испарения воды листьями растений (транспирация) значительно выше, если температура воздуха высокая, а погода ветреная.

В некоторых случаях недостаток одного фактора частично компенсируется усилением другого. Явление частичной взаимозаменяемости действия экологических факторов называется эффектом компенсации. Например, увядание растений можно приостановить как увеличением количества влаги в почве, так и снижением температуры воздуха, уменьшающего транспирацию; в пустынях недостаток осадков в определенной мере восполняется повышенной относительной влажностью воздуха в ночное время; в Арктике продолжительный световой день летом компенсирует недостаток тепла.

Вместе с тем ни один из необходимых организму экологических факторов не может быть полностью заменен другим. Отсутствие света делает жизнь растений невозможной, несмотря на самые благоприятные сочетания других условий. Поэтому если значение хотя бы одного из жизненно необходимых экологических факторов приближается к критической величине или выходит за ее пределы (ниже минимума или выше максимума), то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Такие факторы называются ограничивающими (лимитирующими).

Природа ограничивающих факторов может быть различной. Например, угнетение травянистых растений под пологом буковых лесов, где при оптимальном тепловом режиме, повышенном содержании углекислого газа, богатых почвах возможности развития трав ограничиваются недостатком света. Изменить такой результат можно только воздействием на ограничивающий фактор.

Ограничивающие факторы среды определяют географический ареал вида. Так, продвижение вида на север может лимитироваться недостатком тепла, а в районы пустынь и сухих степей — недостатком влаги или слишком высокими температурами. Фактором, ограничивающим распространение организмов, могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для цветковых растений.

Выявление ограничивающих факторов и устранение их действия, т. е. оптимизация среды обитания живых организмов, составляет важную практическую цель в повышении урожайности сельскохозяйственных культур и продуктивности домашних животных.

 

cyberpedia.su

Факторы среды.

Общие закономерности их действия на живые организмы. Среда обитания - это та часть природы, которая окружает живой организм и с которой он непосредственно взаимодействует. Составные части и свойства среды многообразны и изменчивы. Любое живое существо живет в сложном и меняющемся мире, постоянно приспосабливаясь к нему и регулируя свою жизнедеятельность в соответствии с его изменениями. На нашей планете живые организмы освоили четыре основные среды обитания, сильно различающиеся по специфике условий. Водная среда была первой, в которой возникла и распространилась жизнь. В последующем живые организмы овладели наземно-воздушной средой, создали и заселили почву. Четвертой специфической средой жизни стали сами живые организмы, каждый из которых представляет собой целый мир для населяющих его паразитов или симбионтов.

Приспособления организмов к среде носят название адаптаций. Способность к адаптациям - одно из основных свойств жизни вообще, так как обеспечивает самую возможность ее существования, возможность организмов выживать и размножаться. Адаптации проявляются на разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Адаптации возникают и изменяются в ходе эволюции видов.

Отдельные свойства или элементы среды, воздействующие на организмы, называются экологическими факторами. Факторы среды многообразны. Они могут быть необходимы или, наоборот, вредны для живых существ, способствовать или препятствовать выживанию и размножению. Экологические факторы имеют разную природу и специфику действия. Экологические факторы делятся на абиотические и биотические, антропогенные.

Абиотические факторы - температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды, ветер, течения, рельеф местности - это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы.

Биотические факторы - это формы воздействия живых существ друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других существ, вступает в связь с представителями своего вида и других видов, зависит от них и сам оказывает на них воздействие. Окружающий органический мир - составная часть среды каждого живого существа. Взаимные связи организмов - основа существования биоценозов и популяций; рассмотрение их относится к области синэкологии.

Антропогенные факторы - это формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни. Хотя человек влияет на живую природу через изменение абиотических факторов и биотических связей видов, антропогенную деятельность следует выделять в особую силу, не укладывающуюся в рамки этой классификации. Значение антропогенного влияния на живой мир планеты продолжает стремительно возрастать. Один и тот же фактор среды имеет различное значение в жизни совместно обитающих организмов разных видов. Например, сильный ветер зимой неблагоприятен для крупных, обитающих открыто животных, но не действует на более мелких, которые укрываются в норах или под снегом. Солевой состав почвы важен для питания растений, но безразличен для большинства наземных животных и т. л.

Некоторые свойства среды остаются относительно постоянными на протяжении длительных периодов времени в эволюции видов. Таковы сила тяготения, солнечная постоянная, солевой состав океана, свойства атмосферы. Большинство экологических факторов - температура, влажность, ветер, осадки, наличие укрытий, пищи, хищники, паразиты, конкуренты и т. д. - очень изменчиво в пространстве и времени. Степень изменчивости каждого из этих факторов зависит от особенностей среды обитания. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океана или в глубине пещер. Паразиты млекопитающих живут в условиях избытка пищи, тогда как для свободноживущих хищников ее запасы все время меняются вслед за изменением численности жертв.

Изменения факторов среды во времени могут быть: 1) регулярно-периодическими, меняющими силу воздействия в связи со временем суток или сезоном года или ритмом приливов и отливов в океане; 2) нерегулярными, без четкой периодичности, например изменения погодных условий в разные годы, явления катастрофического характера - бури, ливни, обвалы и т. п.; 3) направленными на протяжении известных, иногда длительных, отрезков времени, например при похолодании или потеплении климата, зарастании водоемов, постоянном выпасе скота на одном и том же участке и т.п. Экологические факторы среды оказывают на живые организмы различные воздействия, т.е. могут влиять как раздражители, вызывающие приспособительные изменения физиологических и биохимических функций; как ограничители, обусловливающие невозможность существования в данных условиях; как модификаторы, вызывающие анатомические и морфологические изменения организмов; как сигналы, свидетельствующие об изменениях других факторов среды.

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

1.Закон оптимума. Каждый фактор имеет лишь определенные пределы положительного влияния на организмы. Результат действия переменного фактора зависит прежде всего от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью (диапазоном толерантности) живых существ по отношению к конкретному фактору среды.

Представители разных видов сильно отличаются друг от друга как по положению оптимума, так и по экологической валентности. Так, например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне около 80°С (от +30° до -55°С), тогда как тепловодные рачки Copilia mirabilis выдерживают изменения температуры воды в интервале не более 6°С (от 23° до 29°С). Появление в эволюции узких диапазонов толерантности можно рассматривать как форму специализации, в результате которой большая эффективность достигается в ущерб адаптивности и в сообществе увеличивается разнообразие.

Одна и та же сила проявления фактора может быть оптимальной для одного вида, пессимальной - для другого и выходить за пределы выносливости для третьего.

Широкую экологическую валентность вида по отношению к абиотическим факторам среды обозначают добавлением к названию фактора приставки "эври". Эвритермные виды - выносящие значительные колебания температуры, эврибатные - широкий диапазон давления, эвригалинные - разную степень засоления среды.

Неспособность переносить значительные колебания фактора, или узкая экологическая валентность, характеризуется приставкой "стено" - стенотермные, стенобатные, стеногалинные виды и т. д. В более широком смысле слова виды, для существования которых необходимы строго определенные экологические условия, называют стенобионтными, а те, которые способны приспосабливаться к разной экологической обстановке - эврибионтными.

2. Неоднозначность действия фактора на разные функции. Каждый фактор неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от 40° до 45°С у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит в другом температурном интервале.

Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т. п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций. Период размножения является обычно критическим; в этот период многие факторы среды часто становятся лимитирующими. Пределы толерантности для размножающихся особей, семян, яиц, эмбрионов, проростков и личинок обычно уже, чем для неразмножающихся взрослых растений или животных. Так, взрослый кипарис может расти и на сухом нагорье и погруженным в воду, но размножается он только там, где есть влажная, но не заливаемая почва для развития проростков. Многие морские животные могут переносить солоноватую или пресную воду с высоким содержанием хлоридов, поэтому они часто заходят в реки вверх по течению. Но их личинки не могут жить в таких водах, так что вид не может размножаться в реке и не обосновывается здесь постоянно.

3. Изменчивость, вариабельность и разнообразие ответных реакций на действие факторов среды у отдельных особей вида.

Степень выносливости, критические точки, оптимальная и пессимальные зоны отдельных индивидуумов не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Например, у бабочки мельничной огневки - одного из вредителей муки и зерновых продуктов - критическая минимальная температура для гусениц -7°С, для взрослых форм -22°С, а для яиц -27°С. Мороз в 10°С губит гусениц, но не опасен для имаго и яиц этого вредителя. Следовательно, экологическая валентность вида всегда шире экологической валентности каждой отдельной особи.

4. К каждому из факторов среды виды приспосабливаются относительно независимым путем. Степень выносливости к какому-нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптаций в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

5. Несовпадение экологических спектров отдельных видов. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким-либо отдельным факторам.

6. Взаимодействие факторов.

Оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Наоборот, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение. Создается эффект частичного взаимозамещения факторов.

Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

7. Правило ограничивающих (лимитирующих) факторов. Факторы среды, наиболее удаляющиеся от оптимума, особенно затрудняют возможность существования вида в данных условиях. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Такие сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных его представителей в каждый конкретный отрезок времени.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной. Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы - недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений.

Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие-либо факторы среды за пределы его экологической валентности, особенно в наиболее уязвимый период развития.

Организмы с широким диапазоном толерантности ко всем факторам обычно наиболее широко распространены.

8. Правило соответствия условий среды генетической предопределенности организма. Вид организмов может существовать до тех пор и постольку, поскольку окружающая его природная среда соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям. Каждый вид живого возник в определенной среде, в той или иной степени приспособился к ней и дальнейшее его существование возможно лишь в ней или близкой среде. Резкое и быстрое изменение среды жизни может привести к тому, что генетические возможности вида окажутся недостаточными для приспособления к новым условиям.

studfiles.net

Д) Температура

Главным источником тепла является солнечное излучение; им могут также быть геотермальные источники, но они играют важную роль только в немногих местообитаниях, например в горячих ключах, где развиваются бактерии и сине-зеленые водоросли.

Данный организм может выживать только в определенных температурных пределах, к которым приспособлены его метаболизм и структура. Если температура живой клетки падает ниже точки замерзания, клетка обычно физически повреждается и гибнет в результате образования кристаллов льда. Если же температура слишком высока, происходит денатурация ферментов. Между этими крайними точками скорость реакций, контролируемых ферментами, а значит, и интенсивность метаболизма удваиваются с повышением температуры на каждые 10 .

Большинство организмов способно в той или иной степени контролировать температуру своего тела с помощью различных ответных реакций и адаптаций, которые могут смягчать воздействие экстремальных условий и внезапных изменений среды. В водной среде из-за высокой теплоемкости воды не происходит резких изменений температуры, так в этом отношении условия здесь более стабильны, чем на суше.

Температура, так же как интенсивность света, в большей мере зависит от географической широты, сезона, времени суток и экспозиции склона. Однако часто встречаются и узколокальные различия в температуре; это в особенности касается микроместообитаний, обладающих собственным микроклиматом. Растительность тоже оказывает некоторое влияние на температуру. Например, иная температура бывает под пологом леса или в меньшей степени внутри отдельных групп растений, а также под листьями отдельного растения.

е) Топография

Влияние топографии тесно связано с другими абиотическими факторами, так как она может сильно сказываться на местном климате и развитии почвы, о чем уже говорилось выше.

Главным топографическим фактором является высота. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков; скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных.

Горные цепи могут служить климатическими барьерами. Воздух, поднимаясь над горами, охлаждается , и при этом часто выпадают осадки. Уже пролившиеся дождем массы воздуха поступают на подветренную сторону гор, где воздух суше и выпадает меньше осадков (дождевая тень). Это влияет на экосистемы. Горы служат также барьерами для распространения и миграции организмов и могут играть важную роль изолирующего фактора в процессах видообразования.

Еще один важный топографический фактор — экспозиция склона. В Северном полушарии склоны, обращены на юг, получают больше солнечного света, и поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции (в Южном полушарии имеет место обратная ситуация). Это оказывает поразительное влияние как. на естественную растительность, так и на угодья, используемые человеком.

И наконец, важным топографическим фактором является крутизна склона. Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому почвы здесь маломощные и более сухие, с ксероморфной растительностью. Если уклон превышает 35 , почва и растительность обычно не образуются, а создаются осыпи из рыхлого материала.

Каждый фактор имеет лишь определенные пределы положительного влияния на организм. Результат действия переменного фактора зависит прежде всего от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организмов данного вида. Чем сильнее отклонение от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора — это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды (рис.11).

Рис. 11. Зависимость результата действия экологического фактора от его интенсивности

Представители разных видов сильно отличаются друг от друга как по положению контимума, так и по экологической валентности. Так, например песцы в тундре могут переносить колебания температуры воздуха в диапазоне около 80 С (от +30 до –55 С), тогда как тепловодные рачки Copilia mirabilis выдерживают изменения температуры воды в интервале не более 6 (от 23 до 29 С). Одна и та же сила проявления фактора может быть оптимальной для одного вида, пессимальной — для другого и выходить за пределы выносливости для третьего.

Широкую экологическую валентность вида по отношению к абиотическим факторам обозначают добавлением к названию фактора приставки "эври". Эвритермные виды — выносящие значительные колебания температуры, эврибатные — широкий диапазон давления, эвригалинные — разную степень засоления среды.

Неспособность переносить значительные колебания фактора, или узкая экологическая валентность, характеризуется приставкой "стено" — стенотермные, стенобатные, стеногалинные виды и т.д. В более широком смысле слова виды, для существования которых необходимы строго определенные экологические условия, называют стенобионтными, а те, которые способны приспосабливаться к разной экологической обстановке, — эврибионтными.

Каждый фактор неодинаково влияет на разные функции организма (рис.12).Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от 40 до 45 С у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепление. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.

Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т.п.), всегда согласован с сезонными изменениями комплексов фактора среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций.

Степень выносливости, критические точки, оптимальная и пессимальная зона отдельных индивидумов не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Например, у бабочки мельничной огневки — одного из вредителей муки и зерновых продуктов — критическая минимальная температура для гусениц –7  С, для взрослых форм –22  С, а для яиц –27  С. Мороз в 10  С губит гусениц, но не опасен для имаго и яиц этого вредителя. Следовательно, экологическая валентность вида всегда шире экологической валентности каждой отдельной особи.

Рис. 12. Схема зависимости фотосинтеза и дыхания от температуры tмин, tопт, tмакс -температурный минимум, оптимум, максимум для прироста растений (заштрихованная область)

Степень выносливости к какому-нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие перемены температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптаций в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким-либо отдельным факторам.

Правило Экологической индивидуальности видов сформулировал русский ботаник Л.Г.Раменский (1924) применительно к растениям, а затем широко было подтверждено и зоологическими исследованиями.

Оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы (рис.13).Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарения. Создается эффект частичного взаимозамещения факторов.

Рис. 13. Смертность куколок яблоневой плодожорки в зависимости от влажности и температуры

Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Такие сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных его представителей в каждый конкретный отрезок времени.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной. Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы — недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых — осы Blastophaga psenes. Родина этого дерева — Средиземноморье. Завезенный в Калифорнию, инжир не плодоносил до тех пор, пока туда не завезли ос — опылителей. Распространение бобовых в Арктике ограничивается распространением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо.

ЭКОЛОГИЧЕСКИЕ НИШИ

Функциональное место биологического вида в экологической системе называют экологической нишей. Каждый биологический вид где-то обитает, “прописан” в каком-то ряде экосистем или одном ценозе. Тут не просто его место обитания, но функциональная роль в месте его “прописки”, в подсистеме биоценоза. Таким образом, ниша — это не полочка в этажерке и не ящичек в шкафу, вообще не морфологическое, а ролевое понятие, так сказать, “профессия” организма. С одной стороны, организм — участник общего потока жизни в биогеоценозе, а с другой, — создатель такого потока. И это, действительно, очень похоже на профессию человека, особенно в свете рассмотренных выше принципов экологической комплектности (дополнительности) и конгруэнтности (соответствия).

Экологическая ниша не может быть занята двумя и более видами (принцип конкурентного исключения). Не существует двух абсолютно одинаковых профессий. Вариантов профессий портного может быть сколько угодно, но портной — тот, кто шьет одежду. Вид занимает экологическую нишу, чтобы выполнять уникальную функцию только ему присущим способом, осваивать таким образом среду обитания и в тоже время ее сформировать. Природа очень экономна: даже всего лишь два вида, занимающих одну и ту же экологическую нишу, не могут устойчиво сосуществовать, поскольку в результате конкуренции один из них будет вытеснен другим. Эту закономерность называют еще законом Г.Ф.Гаузе по имени нашего соотечественника, сформулировавшего его в 1934 году. Любой вид выполняет единственную в своем роде роль. Даже очень близкие виды чем-то различаются: бодрствуют в разное время, имеют хотя бы чуть-чуть различные размеры и т.д.

Экологическая ниша, как функциональное место вида в системе жизни, не может системно долго пустовать, об этом говорит правило обязательности заполнения экологических ниш. Представим себе, что вдруг исчезли бы все портные. Какое-то время можно потерпеть, но затем кому-то пришлось бы начать шить одежду — заполнять экологическую нишу портного. Так и в природе восстанавливается дополнительность и соответствие видов в экосистеме: в противном случае экосистема постепенно разрушится. Исчезновение кедровки, что разносит орешки кедровой сосны, привело бы к тому, что либо какой-то другой вид стал бы распространять более интенсивно семена, например, сойка, в дубовых лесах переносящая желуди и также живущая в кедровниках, либо возобновление кедра резко бы ухудшилось и кедрачи постепенно исчезли. Это повлекло бы за собой непредсказуемые последствия для среды их обитания и ее обитателей.

Долгое время считалось, что где-то существуют “свободные” экологические ниши. На этом основании строилась теория акклиматизации пришелся на 20 - 40-е годы нашего столетия. Однако потом было замечено, что либо опыты акклиматизации видов были безуспешны, что еще хуже, принесли весьма негативные плоды: перенесенные в другие ниши виды делались вредителями, распространяли опасные заболевания. Иначе и не может быть: помещенные в чужую экосистему с фактически занятой экологической нишей они вытесняли тех, кто уже выполнял аналогичную работу. Новые виды не соответствовали нуждам экосистемы, иногда не имели врагов и поэтому могли бурно размножаться (что радовало инициаторов акклиматизации). Но затем вступали в права ограничивающие факторы, популяционные и биоценотические. Численность вида резко падала или он, наоборот, интенсивно размножался, как кролик в Австралии, и становился вредителем. В Европе к такому же печальному результату привел завоз ондатры из Америки. В Западной Европе ондатра сильно вредит, в том числе строя норы в земляных дамбах, а у нас после долгого периода обилия она стала относительно редкой, потеряла первостепенное промысловое значение. Борьба с воробьями в Китае в 50-е годы и их истребление привело к вспышке вредителей — насекомых, поедаемых этим видом. Пришлось воробьев в Китай ввозить... Истребление волков, санитаров леса, было "вовремя" осознано человеком... как вредная деятельность.

Ярким примером катастрофического нарушения экологической ниши является занесение колорадского жука из Америки в Европу, где он при отсутствии естественного врага, стал настоящим бичом картофелеводства, а последствия использования против него ядохимикатов непредсказуемы для человека... Нарушение экологической ниши вызывает функциональные нарушения во всей экосистеме...

Осознание этой проблемы, которое только начинается, диктует человеку жизненно необходимый и для него, как для биологического вида, принцип бережного сохранения всего разнообразия живого вещества планеты Земли.

Анализ местообитания особо выделяются связи с удобством проведения исследований, но он дает мало дополнительной информации по сравнению с тремя подходами, описанными ранее. Тем не менее он широко распространен в полевых исследованиях, поскольку местообитания легко поддаются классификации. Некоторые сообщества, например сообщества песчаных дюн или засоленных болот, так тесно связаны с конкретным местообитанием, что их практически нельзя изучать в ином контексте. Однако компетентное исследование экологии песчаных дюн будет включать и остальные четыре подхода.

Анализ местообитаний очень удобен также при изучении физических факторов среды, таких, как почва, влажность, освещенность, с которыми тесно связана жизнь животных и растений. Здесь связи с экосистемным подходом и изучением сообществ особенно сильны. Развитие смежных наук — гидрологии, почвоведения, матеорологии, климатологии, океанографии и др. — открыло новые важные междисциплинарные области исследования. К сожалению, это привело к тому, что выполнение всестороннего исследования становится слишком трудоемким для одного человека и требует создания рабочей группы, где каждый отдельный эколог обычно изучает лишь один аспект взаимодействия животных или растений с окружающей средой, например гидрологию леса, климатологию поля или восстановление заброшенных земель. Опять-таки можно ожидать, что и здесь будут использоваться функциональные подходы (экосистемный, популяционный, изучение сообществ).

studfiles.net

17.Основные закономерности действия экологических факторов на живые организмы.

Реакция организмов на влияние абиотических факторов. Воздействие экологических факторов на живой организм весьма многообразно. Одни факторы оказывают более сильное влияние, другие действуют слабее; одни влияют на все стороны жизни, другие — на определенный жизненный процесс. Тем не менее в характере их воздействия на организм и в ответных реакциях живых существ можно выявить ряд общих закономерностей, которые укладываются в некоторую общую схему действия экологического фактора на жизнедеятельность организма.

На рис. 14.1 по оси абсцисс отложена интенсивность (или «доза») фактора (например, температура, освещенность, концентрация солей в почвенном растворе, рН или влажность почвы и х д.), а по оси ординат — реакция организма на воздействие экологического фактора в его количественном выражении (например, интенсивность фотосинтеза, дыхания, скорость роста, продуктивность, численность особей на единицу площади и т. д.), т е. степень благотворности фактора.

Диапазон действия экологического фактора ограничен соответствующими крайними пороговыми значениями (точки минимума и максимума), при которых еще возможно существование организма. Эти точки называются нижним и верхним пределами выносливости (толерантности) живых существ по отношению к конкретному фактору среды.

Точка 2 на оси абсцисс, соответствующая наилучшим показателям жизнедеятельности организма, означает наиболее благоприятную для организма величину воздействующего фактора — это точка оптимума. Для большинства организмов определить оптимальное значение фактора с достаточной точностью зачастую трудно, поэтому принято говорить о зоне оптимума. Крайние участки кривой, выражающие состояние угнетения организмов при резком недостатке или избытке фактора, называют областями пессимума или стресса. Вблизи критических точек лежат сублетальные величины фактора, а за пределами зоны выживания —летальные.

Подобная закономерность реакции организмов на воздействие экологических факторов позволяет рассматривать ее как фундаментальный биологический принцип: для каждого вида растений и животных существует оптимум, зона нормальной жизнедеятельности, пессимальные зоны и пределы выносливости по отношению к каждому фактору среды.

Разные виды живых организмов заметно отличаются друг от друга как по положению оптимума, так и по пределам выносливости. Например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне около 80°С (от +30 до -55°С), некоторые тепловодные рачки выдерживают изменения температуры воды в интервале не более 6°С (от 23 до 29°С), нитчатая цианобактерия осциллатория, живущая на острове Ява в воде с температурой 64°С, погибает при 68°С уже через 5—10 мин. Точно так же одни луговые травы предпочитают почвы с довольно узким диапазоном кислотности — при рН = 3,5—4,5 (например, вереск обыкновенный, белоус торчащий, щавель малый служат индикаторами кислых почв), другие хорошо растут при широком диапазоне рН — от сильнокислого до щелочного (например, сосна обыкновенная). В связи с этим организмы, для существования которых необходимы строго определенные, относительно постоянные условия среды, называют стенобионтными (греч. stenos — узкий, bion — живущий), а те, которые живут в широком диапазоне изменчивости условий среды, —эврибионтными (греч. eurys — широкий). При этом организмы одного и того же вида могут иметь узкую амплитуду по отношению к одному фак тору и широкую — к другому (например, приспособленность к узкому диапазону температур и широкому диапазону солености воды). Кроме того, одна и та же доза фактора может быть оптимальной для одного вида, пессимальной для другого и выходить за пределы выносливости для третьего.

Способность организмов адаптироваться к определенному диапазону изменчивости факторов среды называют экологической пластичностью. Эта особенность является одним из важнейших свойств всего живого: регулируя свою жизнедеятельность в соответствии с изменениями условий среды, организмы приобретают возможность выживать и оставлять потомство. Значит, эврибионтные организмы явлются эколог ически наиболее пластичными, что обеспечивает их широкое распространение, а стенобионтные, напротив, отличаются слабой экологической пластичностью и, как следствие, обычно имеют ограниченные ареалы распространения.

Взаимодействие экологических факторов. Ограничивающий фактор. Экологические факторы воздействуют на живой организм совместно и одновременно. При этом действие одного фактора зависит от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействие факторов. Например, жару или мороз легче переносить при сухом, а не при влажном воздухе. Скорость испарения воды листьями растений (транспирация) значительно выше, если температура воздуха высокая, а погода ветреная.

В некоторых случаях недостаток одного фактора частично компенсируется усилением другого. Явление частичной взаимозаменяемости действия экологических факторов называется эффектом компенсации. Например, увядание растений можно приостановить как увеличением количества влаги в почве, так и снижением температуры воздуха, уменьшающего транспирацию; в пустынях недостаток осадков в определенной мере восполняется повышенной относительной влажностью воздуха в ночное время; в Арктике продолжительный световой день летом компенсирует недостаток тепла.

Вместе с тем ни один из необходимых организму экологических факторов не может быть полностью заменен другим. Отсутствие света делает жизнь растений невозможной, несмотря на самые благоприятные сочетания других условий. Поэтому если значение хотя бы одного из жизненно необходимых экологических факторов приближается к критической величине или выходит за ее пределы (ниже минимума или выше максимума), то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Такие факторы называются ограничивающими (лимитирующими).

Природа ограничивающих факторов может быть различной. Например, угнетение травянистых растений под пологом буковых лесов, где при оптимальном тепловом режиме, повышенном содержании углекислого газа, богатых почвах возможности развития трав ограничиваются недостатком света. Изменить такой результат можно только воздействием на ограничивающий фактор.

Ограничивающие факторы среды определяют географический ареал вида. Так, продвижение вида на север может лимитироваться недостатком тепла, а в районы пустынь и сухих степей — недостатком влаги или слишком высокими температурами. Фактором, ограничивающим распространение организмов, могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для цветковых растений.

Выявление ограничивающих факторов и устранение их действия, т. е. оптимизация среды обитания живых организмов, составляет важную практическую цель в повышении урожайности сельскохозяйственных культур и продуктивности домашних животных.

studfiles.net

Неоднозначность действия фактора на разные функции.

МегаПредмет 

Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как определить диапазон голоса - ваш вокал

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший "Салат из свеклы с чесноком"

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Как слышать голос Бога

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека

Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Законы действия факторов

Закон оптимума.

Каждый фактор имеет определенные пределы положительного влияния на организмы (рис.1). Результат действия переменного фактора зависит, прежде всего, от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды.

Рис.1. Схема действия факторов среды на живые организмы

Представители разных видов сильно отличаются друг от друга как по положению оптимума, так и по экологической валентности. Так, например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне более 80C (от +30 до ‑55C), тогда как тепловодные рачки Copilia mirabilis выдерживают изменения температуры воды в интервале не более 6C (от +23 до +29C). Одна и та же сила проявления фактора может быть оптимальной для одного вида, пессимальной – для другого и выходить за пределы выносливости для третьего (рис.2).

Широкую экологическую валентность вида по отношению к абиотическим факторам среды обозначают добавлением к названию фактора приставки «эври». Эвритермные виды – выносящие значительные колебания температуры, эврибатные – широкий диапазон давления, эвригалинные – разную степень засоления среды.

Рис.2. Положение кривых оптимума на температурной шкале для разных видов:

1, 2 – стенотермные виды, криофилы;

3–7 –эвритермные виды;

8, 9– стенотермные виды, термофилы

Неспособность переносить значительные колебания фактора, или узкая экологическая валентность, характеризуется приставкой «стено» – стенотермные, стенобатные, стеногалинные виды и т.д. В более широком смысле слова виды, для существования которых необходимы строго определенные экологические условия, называют стенобионтными, а те, которые способны приспосабливаться к разной экологической обстановке,– эврибионтными.

Условия, приближающиеся по одному или сразу нескольким факторам к критическим точкам, называют экстремальными.

Положение оптимума и критических точек на градиенте фактора может быть в определенных пределах сдвинуто действием условий среды. Это регулярно происходит у многих видов при смене сезонов года. Зимой, например, воробьи выдерживают сильные морозы, а летом гибнут от охлаждения при температуре чуть ниже нуля. Явление сдвига оптимума по отношению к какому‑либо фактору носит название акклимации. В отношении температуры это хорошо известный процесс тепловой закалки организма. Для температурной акклимации необходим значительный период времени. Механизмом является смена в клетках ферментов, катализирующих одни и те же реакции, но при разных температурах (так называемые изоферменты). Каждый фермент кодируется своим геном, следовательно, необходимо выключение одних генов и активация других, транскрипция, трансляция, сборка достаточного количества нового белка и т.п. Общий процесс занимает в среднем около двух недель и стимулируется переменами в окружающей среде. Акклимация, или закалка, – важная адаптация организмов, происходит при постепенно надвигающихся неблагоприятных условиях или при попадании на территории с иным климатом. Она является в этих случаях составной частью общего процесса акклиматизации.

Правило ограничивающих факторов.Лимитирующий фактор Законы Либиха и Шелфорда.

Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Любые сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных его представителей в конкретные отрезки времени.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной (рис. 6). Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых – осы Blastophaga psenes. Родина этого дерева – Средиземноморье. Завезенный в Калифорнию инжир не плодоносил до тех пор, пока туда не завезли ос ‑ опылителей.

Рис. 6. Глубокий снежный покров – лимитирующий фактор в распространении оленей (по Г. А. Новикову, 1981)

Эта закономерность была определена немецким химиком Ю. Либихом в 1840 году и получила название закона минимума Либиха, согласно которому рост растений ограничивается нехваткой единственного биогенного элемента, концентрация которого лежит в минимуме. Если другие элементы будут содержаться в достаточном количестве, а концентрация этого единственного элемента опустится ниже нормы, растение погибнет. Такие элементы получили название лимитирующих факторов.

Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие ‑ либо факторы среды за пределы его экологической валентности, особенно в наиболее уязвимый период развития.

Выявление ограничивающих факторов очень важно в практике сельского хозяйства, так как, направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или производительность животных. Так, на сильно кислых почвах урожай пшеницы можно несколько увеличить, применяя разные агрономические воздействия, но наилучший эффект будет получен только в результате известкования, которое снимет ограничивающие действия кислотности. Знание ограничивающих факторов, таким образом, ключ к управлению жизнедеятельностью организмов. В разные периоды жизни особей, в качестве ограничивающих выступают различные факторы среды, поэтому требуется умелое и постоянное регулирование условий жизни выращиваемых растений и животных.

Позднее закон минимума стал трактоваться более широко, и в настоящее время говорят о лимитирующих экологических факторах. Экологический фактор играет роль лимитирующего в том случае, когда он отсутствует или находится ниже критического уровня, или превосходит максимально выносимый предел. Иными словами, этот фактор обусловливает возможности организма в попытке вторгнуться в ту или иную среду. Одни и те же факторы могут быть или лимитирующими или нет. Например, свет для большинства растений это необходимый фактор как поставщик энергии для фотосинтеза, тогда как для грибов или глубоководных и почвенных животных этот фактор не обязателен. Кислород в почве не лимитирующий фактор, а в воде - лимитирующий.

Ограничивающее значение имеют не только факторы, которые находятся в минимуме. Впервые представление о лимитирующем влиянии максимального значения фактора наравне с минимумом было высказано в 1913 году американским зоологом В. Шелфордом. Согласно сформулированному закону толерантностиШелфорда существование вида определяется как недостатком, так и избытком любого из факторов, имеющих уровень, близкий к пределу переносимости данным организмом. В связи с этим все факторы, уровень которых приближается к пределу выносливости организма, называются лимитирующими.

Лимитирующим фактором процветания организма может быть как минимум, так и максимум фактора, диапазон между ними определяет величину толерантности.

Точки, где график пересекает горизонтальную ось, называют минимальной и максимальной критическими точками. При переходе интенсивности экологических факторов через эти критические значения приспособительные силы организма оказываются, превышены, и он погибает. Чем больше расстояние между минимальной и максимальной критическими точками, тем выносливей данный вид по отношению к экологическим факторам.

 

 

Неоднозначность действия фактора на разные функции.

Каждый фактор неодинаково влияет на разные функции организма (рис. 3). Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от +40 до +45 °C у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.

Рис. 3. Схема зависимости фотосинтеза и дыхания растения от температуры (по В. Лархеру, 1978): tмин, tопт, tмакс – температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)

Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т. п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций.

4. Относительная независимость приспособления организмов к разным факторам. Степень выносливости к какому‑нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптации в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

5. Несовпадение экологических спектров отдельных видов. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким‑либо отдельным факторам.

Рис. 4. Изменение участия в луговых травостоях отдельных видов растений в зависимости от увлажнения (по Л. Г. Раменскому и др., 1956): 1 – клевер луговой; 2 – тысячелистник обыкновенный; 3 – келерия Делявина; 4 – мятлик луговой; 5 – типчак; 6 – подмаренник настоящий; 7 – осока ранняя; 8 – таволга обыкновенная; 9 – герань холмовая; 10 – короставник полевой; 11 – козлобородник коротконосиковый

Правило экологической индивидуальности видов сформулировал русский ботаник Л. Г. Раменский (1924) применительно к растениям (рис. 4), затем оно широко было подтверждено и зоологическими исследованиями.

6. Взаимодействие факторов. Оптимальная зона и пределы выносливости организмов по отношению к какому‑либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы (рис. 5). Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Наоборот, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение. Создается эффект частичного взаимозамещения факторов.

Рис. 5. Смертность яиц соснового шелкопряда Dendrolimus pini при разных сочетаниях температуры и влажности

Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

Учитывая в сельскохозяйственной практике закономерности взаимодействия экологических факторов, можно умело поддерживать оптимальные условия жизнедеятельности культурных растений и домашних животных.

 

 

megapredmet.ru


Смотрите также