Содержание
Что такое TCP/IP и как работает этот протокол – База знаний Timeweb Community
Протокол TCP/IP – это целая сетевая модель, описывающая способ передачи данных в цифровом виде. На правилах, включенных в нее, базируется работа интернета и локальных сетей независимо от их назначения и структуры.
Что такое TCP/IP
Произошло наименование протокола от сокращения двух английских понятий – Transmission Control Protocol и Internet Protocol. Набор правил, входящий в него, позволяет обрабатывать как сквозную передачу данных, так и другие детали этого механизма. Сюда входит формирование пакетов, способ их отправки, получения, маршрутизации, распаковки для передачи программному обеспечению.
Стек протоколов TCP/IP был создан в 1972 году на базе NCP (Network Control Protocol), в январе 1983 года он стал официальным стандартом для всего интернета. Техническая спецификация уровней взаимодействия описана в документе RFC 1122.
В составе стека есть и другие известные протоколы передачи данных – UDP, FTP, ICMP, IGMP, SMTP. Они представляют собой частные случаи применения технологии: например, у SMTP единственное предназначение заключается в отправке электронных писем.
Комьюнити теперь в Телеграм
Подпишитесь и будьте в курсе последних IT-новостей
Подписаться
Уровни модели TCP/IP
Протокол TCP/IP основан на OSI и так же, как предшественник, имеет несколько уровней, которые и составляют его архитектуру. Всего выделяют 4 уровня – канальный (интерфейсный), межсетевой, транспортный и прикладной.
Канальный (сетевой интерфейс)
Аппаратный уровень обеспечивает взаимодействие сетевого оборудования Ethernet и Wi-Fi. Он соответствует физическому из предыдущего стандарта OSI. Здесь задача состоит в кодировании информации, ее делению на пакеты и отправке по нужному каналу. Также измеряются параметры сигнала вроде задержки ответа и расстояния между хостами.
Межсетевой (Internet Layer)
Интернет состоит из множества локальных сетей, объединенных между собой как раз за счет протокола связи TCP/IP. Межсетевой уровень регламентирует взаимодействие между отдельными подсетями. Маршрутизация осуществляется путем обращения к определенному IP-адресу с использованием маски.
Если хосты находятся в одной подсети, маркируемой одной маской, данные передаются напрямую. В противном случае информация «путешествует» по целой цепочке промежуточных звеньев, пока не достигнет нужной точки. Назначение IP-адреса проводится по стандарту IPv4 или IPv6 (они не совместимы между собой).
Транспортный уровень (Transport Layer)
Следующий уровень отвечает за контроль доставки, чтобы не возникало дублей пакетов данных. В случае обнаружения потерь или ошибок информация запрашивается повторно. Такой подход дает возможность полностью автоматизировать процессы независимо от скорости и качества связи между отдельными участками интернета или внутри конкретной подсети.
Протокол TCP отличается большей достоверностью передачи данных по сравнению с тем же UDP, который подходит только для передачи потокового видео и игровой графики. Там некритичны потери части пакетов, чего нельзя сказать о копировании программных файлов и документов. На этом уровне данные не интерпретируются.
Прикладной уровень (Application Layer)
Здесь объединены 3 уровня модели OSI – сеансовый, представления и прикладной. На него ложатся задачи по поддержанию сеанса связи, преобразованию данных, взаимодействию с пользователем и сетью. На этом уровне применяются стандарты интерфейса API, позволяющего передавать команды на выполнение определенных задач.
Возможно и использование «производных» протоколов. Например, для открытия сайтов используется HTTPS, при отправке электронной почты – SMTP, для назначения IP-адресов – DHCP. Такой подход упрощает программирование, снижает нагрузку на сеть, увеличивает скорость обработки команд и передачи данных.
Порты и сокеты – что это и зачем они нужны
Процессы, работающие на прикладном уровне, «общаются» с транспортным, но они видны ему как «черные ящики» с зашифрованной информацией. Зато он понимает, на какой IP-адрес адресованы данные и через какой порт надо их принимать. Этого достаточно для точного распределения пакетов по сети независимо от месторасположения хостов. Порты с 0 до 1023 зарезервированы операционными системами, остальные, в диапазоне от 1024 до 49151, условно свободны и могут использоваться сторонними приложениями.
Комбинация IP-адреса и порта называется сокетом и используется при идентификации компьютера. Если первый критерий уникален для каждого хоста, второй обычно фиксирован для определенного типа приложений. Так, получение электронной почты проходит через 110 порт, передача данных по протоколу FTP – по 21, открытие сайтов – по 80.
Преобразование IP-адресов в символьные адреса
Технология активно используется для назначения буквенно-цифровых названий веб-ресурсов. При вводе домена в адресной строке браузера сначала происходит обращение к специальному серверу DNS. Он всегда прослушивает порт 53 у всех компьютеров, которые подключены к интернету, и по запросу преобразует введенное название в стандартный IP-адрес.
После определения точного местонахождения файлов сайта включается обычная схема работы – от прикладного уровня с кодированием данных до обращения к физическому оборудованию на уровне сетевых интерфейсов. Процесс называется инкапсуляцией информации. На принимающей стороне происходит обратная процедура – декапсуляция.
Руководство по стеку протоколов TCP/IP для начинающих
Cтек протоколов TCP/IP широко распространен. Он используется в качестве основы для глобальной сети интернет. Разбираемся в основных понятиях и принципах работы стека.
Основы TCP/IP
Стек протоколов TCP/IP (Transmission Control Protocol/Internet Protocol, протокол управления передачей/протокол интернета) — сетевая модель, описывающая процесс передачи цифровых данных. Она названа по двум главным протоколам, по этой модели построена глобальная сеть — интернет. Сейчас это кажется невероятным, но в 1970-х информация не могла быть передана из одной сети в другую, с целью обеспечить такую возможность был разработан стек интернет-протоколов также известный как TCP/IP.
Разработкой этих протоколов занималось Министерство обороны США, поэтому иногда модель TCP/IP называют DoD (Department of Defence) модель. Если вы знакомы с моделью OSI, то вам будет проще понять построение модели TCP/IP, потому что обе модели имеют деление на уровни, внутри которых действуют определенные протоколы и выполняются собственные функции. Мы разделили статью на смысловые части, чтобы было проще понять, как устроена модель TCP/IP:
Уровневая модель TCP/IP
Выше мы уже упоминали, что модель TCP/IP разделена на уровни, как и OSI, но отличие двух моделей в количестве уровней. Документом, регламентирующим уровневую архитектуру модели и описывающий все протоколы, входящие в TCP/IP, является RFC 1122. Стандарт включает четыре уровня модели TCP/IP, хотя, например, согласно Таненбауму (Таненбаум Э., Уэзеролл Д. Т18 Компьютерные сети. 5-е изд. — СПб.: Питер, 2012. — 960 с.: ил. ISBN 978-5-459-00342-0), в модели может быть пять уровней.
Три верхних уровня — прикладной, транспортный и сетевой — присутствуют как в RFC, так и у Таненбаума и других авторов. А вот стоит ли говорить только о канальном или о канальном и физическом уровнях — нет единого мнения. В RFC они объединены, поскольку выполняют одну функцию. В статье мы придерживаемся официального интернет-стандарта RFC и не выделяем физический уровень в отдельный. Далее мы рассмотрим четыре уровня модели.
Канальный уровень (link layer)
Предназначение канального уровня — дать описание тому, как происходит обмен информацией на уровне сетевых устройств, определить, как информация будет передаваться от одного устройства к другому. Информация здесь кодируется, делится на пакеты и отправляется по нужному каналу, т.е. среде передачи.
Этот уровень также вычисляет максимальное расстояние, на которое пакеты возможно передать, частоту сигнала, задержку ответа и т.д. Все это — физические свойства среды передачи информации. На канальном уровне самым распространенным протоколом является Ethernet, но мы рассмотрим его на примере в конце статьи.
Межсетевой уровень (internet layer)
Каждая индивидуальная сеть называется локальной, глобальная сеть интернет позволяет объединить все локальные сети. За объединение локальных сетей в глобальную отвечает сетевой уровень. Он регламентирует передачу информации по множеству локальных сетей, благодаря чему открывается возможность взаимодействия разных сетей.
Межсетевое взаимодействие — это основной принцип построения интернета. Локальные сети по всему миру объединены в глобальную, а передачу данных между этими сетями осуществляют магистральные и пограничные маршрутизаторы.
Маска подсети и IP-адреса
Маска подсети помогает маршрутизатору понять, как и куда передавать пакет. Подсетью может являться любая сеть со своими протоколами. Маршрутизатор передает пакет напрямую, если получатель находится в той же подсети, что и отправитель. Если же подсети получателя и отправителя различаются, пакет передается на второй маршрутизатор, со второго на третий и далее по цепочке, пока не достигнет получателя.
Протокол интернета — IP (Internet Protocol) используется маршрутизатором, чтобы определить, к какой подсети принадлежит получатель. Свой уникальный IP-адрес есть у каждого сетевого устройства, при этом в глобальной сети не может существовать два устройства с одинаковым IP. Он имеет два подвида, первым был принят IPv4 (IP version 4, версии 4) в 1983 году.
IPv4 предусматривает назначение каждому устройству 32-битного IP-адреса, что ограничивало максимально возможное число уникальных адресов 4 миллиардами (232). В более привычном для человека десятичном виде IPv4 выглядит как четыре блока (октета) чисел от 0 до 255, разделенных тремя точками. Первый октет IP-адреса означает его класс, классов всего 4: A, B, C, D.
Рассмотрим, например, IPv4 адрес класса С 223.135.100.7. Первые два октета 223.135 определяют класс, третий — .100 — это номер подсети, а последний означает номер сетевого оборудования. Например, если необходимо отправить информацию с компьютера номер 7 с IPv4 адресом 223.135.100.7 на компьютер номер 10 в той же подсети, то адрес компьютера получателя будет следующий: 223.135. 100.10.
В связи с быстрым ростом сети интернет остро вставала необходимость увеличения числа возможных IP-адресов. В 1998 впервые был описан IPv6 (IP version 6, версии 6), который использует 128-битные адреса, и позволяет назначить уникальные адреса для 2128 устройств. Такого количества IPv6 адресов будет достаточно, чтобы назначить уникальный адрес для каждого атома на планете.
IPv6 имеет вид восьми блоков по четыре шестнадцатеричных значения, а каждый блок разделяется двоеточием. IPv6 выглядит следующим образом:
2DAB:FFFF:0000:0000:01AA:00FF:DD72:2C4A.
Так как IPv6 адреса длинные, их разрешается сокращать по следующим правилам: ведущие нули допускается опускать, например в адресе выше :00FF: позволяется записывать как :FF:, группы нулей, идущие подряд тоже допустимо сокращать и заменять на двойное двоеточие, например, 2DAB:FFFF::01AA:00FF:DD72:2C4A. Допускается делать не больше одного подобного сокращения в адресе IPv6.
IP предназначен для определения адресата и доставки ему информации, он предоставляет услугу для вышестоящих уровней, но не гарантирует целостность доставляемой информации.
IP способен инкапсулировать другие протоколы, предоставлять место, куда они могут быть встроены. Как было сказано выше, IP — это 32 бита информации, первые 8 бит в заголовке IP — поля для указания номера инкапсулируемого протокола. Для IPv4 первые 8 бит — поле «протокол», для IPv6 — поле «следующий заголовок». Например, ICMP (межсетевой протокол управляющих сообщений) будет обозначен числом 1, а IGMP (межсетевой протокол группового управления) будет обозначен числом 2.
ICMP и IGMP
ICMP используется в качестве поддержки маршрутизаторами и другими сетевыми устройствами. Внутри сети он служит для доставки сообщений об ошибках и операционной информации, сообщающей об успехе или ошибке при связи с другим IP. Например, в ситуациях, когда необходимый сервис не может быть запрошен, или когда не был получен ответ от маршрутизатора или хоста.
ICMP никогда не вызывается сетевыми приложениями пользователя, кроме случаев диагностики сети, к примеру, пинг (ping) или traceroute (tracert). ICMP не передает данные, это отличает его от транспортных TCP и UDP, расположенных на L3, которые переносят любые данные. ICMP работает только с IP четвертой версии, с IPv6 взаимодействует ICMPv6.
Сетевые устройства объединяются в группы при помощи IGMP, используемый хостами и роутерами в IPv4 сетях. IGMP организует multicast-передачу информации, что позволяет сетям направлять информацию только хостам, запросившим ее. Это удобно для онлайн-игр или потоковой передаче мультимедиа. IGMP используется только в IPv4 сетях, в сетях IPv6 используется MLD (Multicast Listener Discovery, протокол поиска групповых слушателей), инкапсулированный в ICMPv6.
Транспортный уровень (transport layer)
Постоянные резиденты транспортного уровня — протоколы TCP и UDP, они занимаются доставкой информации.
TCP (протокол управления передачей) — надежный, он обеспечивает передачу информации, проверяя дошла ли она, насколько полным является объем полученной информации и т. д. TCP дает возможность двум хостам производить обмен пакетами через установку соединения. Он предоставляет услугу для приложений, повторно запрашивает потерянную информацию, устраняет дублирующие пакеты, регулируя загруженность сети. TCP гарантирует получение и сборку информации у адресата в правильном порядке.
UDP (протокол пользовательских датаграмм) — ненадежный, он занимается передачей автономных датаграмм. UDP не гарантирует, что всех датаграммы дойдут до получателя. Датаграммы уже содержат всю необходимую информацию, чтобы дойти до получателя, но они все равно могут быть потеряны или доставлены в порядке отличном от порядка при отправлении.
UDP обычно не используется, если требуется надежная передача информации. Использовать UDP имеет смысл там, где потеря части информации не будет критичной для приложения, например, в видеоиграх или потоковой передаче видео. UDP необходим, когда делать повторный запрос сложно или неоправданно по каким-то причинам.
Протоколы L3 не интерпретируют информацию, полученную с верхнего или нижних уровней, они служат только как канал передачи, но есть исключения. RSVP (Resource Reservation Protocol, протокол резервирования сетевых ресурсов) может использоваться, например, роутерами или сетевыми экранами в целях анализа трафика и принятия решений о его передаче или отклонении в зависимости от содержимого.
Прикладной уровень (application layer)
В модели TCP/IP отсутствуют дополнительные промежуточные уровни (представления и сеансовый) в отличие от OSI. Функции форматирования и представления данных делегированы библиотекам и программным интерфейсам приложений (API) — своего рода базам знаний. Когда службы или приложения обращаются к библиотеке или API, те в ответ предоставляют набор действий, необходимых для выполнения задачи и полную инструкцию, каким образом эти действия нужно выполнять.
Протоколы прикладного уровня действуют для большинства приложений, они предоставляют услуги пользователю или обмениваются данными с «коллегами» с нижних уровней по уже установленным соединениям. Здесь для большинства приложений созданы свои протоколы, например HTTP для передачи гипертекста по сети, SMTP для передачи почты, FTP для передачи файлов, протокол назначения IP-адресов DHCP и прочие.
Зачем нужен порт и что означает термин сокет
Приложения прикладного уровня, общаются также с предыдущим, транспортным, но они видят его протоколы как «черные ящики». Для приема-передачи информации они могут работать с TCP или UDP, но понимают только конечный адрес в виде IP и порта, а не принцип их работы.
IP присваивается каждому компьютеру межсетевым уровнем, но обмен данными происходит не между компьютерами, а между приложениями, установленными на них. Чтобы получить доступ к тому или иному сетевому приложению недостаточно только IP, для идентификации приложений применяют порты. Комбинация IP-адреса и порта называется сокетом или гнездом (socket). Поэтому обмен информацией происходит между сокетами. Нередко слово сокет употребляют как синоним для хоста или пользователя, также сокетом называют гнездо подключения процессора.
Из привилегий у приложений на прикладном уровне можно выделить наличие собственных протоколов для обмена данными, а также фиксированный номер порта для обращения к сети. Администрация адресного пространства интернет (IANA), занимающаяся выделением диапазонов IP-адресов, отвечает еще за назначение сетевым приложениям портов.
Так почтовые приложения, которые общаются по SMTP-протоколу, прослушивают порт 25, почта через POP3 приходит на 110-й, по HTTP принимают сообщения веб-сервера — это порт 80, 21-й зарезервирован за FTP. Порт всегда записывается после IP и отделяется от него двоеточием, выглядит это, например, так: 192.168.1.1:80.
Чтобы не запоминать числовые адреса интернет-серверов была создана DNS — служба доменных имен. DNS всегда слушает на 53 порту и преобразует буквенные имена сетевых доменов в числовые IP-адреса и наоборот. Служба DNS позволяет не запоминать IP — компьютер самостоятельно посылает запрос «какой IP у selectel.ru?» на 53 порт DNS-сервера, полученного от поставщика услуг интернет.
DNS-сервер дает компьютеру ответ «IP для selectel.ru — XXX.XXX.XXX.XXX». Затем, компьютер устанавливает соединение с веб-сервером полученного IP, который слушает на порту 80 для HTTP-протокола и на порту 443 для HTTPS. В браузере порт не отображается в адресной строке, а используется по умолчанию, но, по сути, полный адрес сайта Selectel выглядит вот так: https://selectel.ru:443.
Процесс, кодирования данных на прикладном уровне, передача их на транспортном, а затем на межсетевом и, наконец, на канальном уровне называется инкапсуляцией данных. Обратная передача битов информации по иерархии, с канального на прикладной уровни, называют декапсуляцией. Оба процесса осуществляются на компьютерах получателя и отправителя данных попеременно, это позволяет долго не удерживать одну сторону канала занятой, оставляя время на передачу информации другому компьютеру.
Стек протоколов, снова канальный уровень
О канальном уровне модели TCP/IP мы рассказали меньше всего, давайте вернемся еще раз к началу, чтобы рассмотреть инкапсуляцию протоколов и, что значит «стек».
Большинству пользователей знаком протокол Ethernet. В сети, по стандарту Ethernet, устройства отправителя и адресата имеют определенный MAC-адрес — идентификатор «железа». MAC-адрес инкапсулируется в Ethernet вместе с типом передаваемых данных и самими данными. Фрагмент данных, составленных в соответствии с Ethernet называется фреймом или кадром (frame).
MAC-адрес каждого устройства уникален и двух «железок» с одинаковым адресом не должно существовать, хотя порой такое случается, что приводит к сетевым проблемам. Таким образом, при получении сетевой адаптер занимается извлечением полученной информации из кадра и ее дальнейшей обработкой.
После ознакомления с уровневой структурой модели становится понятно, что информация не может передаваться между двумя компьютерами напрямую. Сначала кадры передаются на межсетевой уровень, где компьютеру отправителя и компьютеру получателя назначается уникальный IP. После чего, на транспортном уровне, информация передается в виде TCP-фреймов либо UDP-датаграмм.
На каждом этапе, подобно снежному кому, к уже имеющейся информации добавляется служебная информация, например, порт на прикладном уровне, необходимый для идентификации сетевого приложения. Добавление служебной информации к основной обеспечивают разные протоколы — сначала Ethernet, поверх него IP, еще выше TCP, над ним порт, означающий приложение с делегированным ему протоколом. Такая вложенность называется стеком, названным TCP/IP по двум главным протоколам модели.
Point-to-Point протоколы
Отдельно расскажем о Point-to-Point (от точки к точке, двухточечный) протоколе также известном как PPP. PPP уникален по своим функциям, он применяется для коммуникации между двумя маршрутизаторами без участия хоста или какой-либо сетевой структуры в промежутке. При необходимости, PPP обеспечивает аутентификацию, шифрование, а также сжатие данных. Он широко используется при построении физических сетей, например, кабельных телефонных, сотовых телефонных, сетей по кабелю последовательной передачи и транк-линий (когда один маршрутизатор подключают к другому для увеличения размера сети).
У PPP есть два подвида — PPPoE (PPP по Ethernet) и PPPoA (PPP через асинхронный способ передачи данных — ATM), интернет-провайдеры часто их используют для DSL соединений.
PPP и его старший аналог SLIP (протокол последовательной межсетевой связи) формально относятся к межсетевому уровню TCP/IP, но в силу особого принципа работы, иногда выделяются в отдельную категорию. Преимущество PPP в том, что для установки соединения не требуется сетевая инфраструктура, а необходимость маршрутизаторов отпадает. Эти факторы обуславливают специфику использования PPP протоколов.
Заключение
Стек TCP/IP регламентирует взаимодействие разных уровней. Ключевым понятием в здесь являются протоколы, формирующие стек, встраиваясь друг в друга с целью передать данные. Рассмотренная модель по сравнению с OSI имеет более простую архитектуру.
Сама модель остается неизменной, в то время как стандарты протоколов могут обновляться, что еще дальше упрощает работу с TCP/IP. Благодаря всем преимуществам стек TCP/IP получил широкое распространение и использовался сначала в качестве основы для создания глобальной сети, а после для описания работы интернета.
404: Страница не найдена
Страница, которую вы пытались открыть по этому адресу, похоже, не существует. Обычно это результат плохой или устаревшей ссылки. Мы приносим свои извинения за доставленные неудобства.
Что я могу сделать сейчас?
Если вы впервые посещаете TechTarget, добро пожаловать! Извините за обстоятельства, при которых мы встречаемся. Вот куда вы можете пойти отсюда:
Поиск
- Узнайте последние новости.
- Наша домашняя страница содержит самую свежую информацию о сети.
- Наша страница о нас содержит дополнительную информацию о сайте SearchNetworking, на котором вы находитесь.
- Если вам нужно, свяжитесь с нами, мы будем рады услышать от вас.
Просмотр по категории
ПоискЕдиные Коммуникации
-
Cisco добавляет дополнительную интеграцию Webex-Teams для гибридной работыпользователей Cisco Webex теперь имеют больше гибридных рабочих функций, включая новую доску и интеграцию с Teams, iPhone и iPad …
-
Как сбалансировать конфиденциальность удаленной работы и мониторинг производительностиСопоставление мониторинга производительности сотрудников с конфиденциальностью удаленных работников является серьезной проблемой, требующей защиты личных . ..
-
Как бороться с проблемами безопасности голоса на платформах для совместной работыСовместная работа на предприятии является неотъемлемой частью ведения бизнеса. Но компании должны научиться защищаться от проблем с безопасностью голоса…
SearchMobileComputing
-
Вопросы и ответы Jamf: как упрощенная регистрация BYOD помогает ИТ-специалистам и пользователямРуководители Jamf на JNUC 2022 делятся своим видением будущего с упрощенной регистрацией BYOD и ролью iPhone в …
-
Jamf приобретет ZecOps для повышения безопасности iOSJamf заплатит нераскрытую сумму за ZecOps, который регистрирует активность на устройствах iOS для выявления потенциальных атак. Компании ожидают …
-
Apple преследует растущий премиальный рынок с iPhone 14Apple переключила свое внимание на смартфоны премиум-класса в новейшей линейке iPhone 14 с такими функциями, как режим блокировки, который IT . ..
SearchDataCenter
-
HPE обновляет серверы ProLiant в комплекте с лицензией GreenLakeHPE добавила еще один вариант программного обеспечения и услуг с новыми серверами ProLiant с GreenLake, улучшенным программным обеспечением для обеспечения безопасности и …
-
Учитывайте этические вопросы технологий при росте центра обработки данныхАвторы Гарри Льюис и Кен Ледин обсуждают этические вопросы, которые организациям следует учитывать при расширении центров обработки данных, …
-
Лучшие практики оптимизации сети центра обработки данныхОптимизация сети центра обработки данных может улучшить влияние на бизнес и обеспечить долгосрочную работоспособность оборудования. Посмотрите, чтобы испытать новое оборудование,…
SearchITChannel
-
Отчет Capital One по машинному обучению указывает на партнерствоИсследование лиц, принимающих решения в области управления данными, предполагает, что совместная работа будет играть важную роль в развитии корпоративных машин . ..
-
Объем рынка ИТ-услуг вырастет на 7,9% в 2023 годуИТ-директора в следующем году, вероятно, снова призовут поставщиков услуг к работе, поскольку они надеются преодолеть разрыв в навыках и …
-
Консалтинговая компания EY делает ставку на платформу Nexus для быстрой трансформацииПлатформа Nexus призвана помочь клиентам модернизировать ИТ и могла бы стать частью консалтинговой компании EY как отдельной организации; прочее…
Что такое модель TCP/IP протокола управления передачей?
TCP означает протокол управления передачей, стандарт связи, который позволяет прикладным программам и вычислительным устройствам обмениваться сообщениями по сети. Он предназначен для отправки пакетов через Интернет и обеспечения успешной доставки данных и сообщений по сети.
TCP является одним из основных стандартов, определяющих правила Интернета, и включен в стандарты, определенные Инженерной группой Интернета (IETF). Это один из наиболее часто используемых протоколов в цифровой сетевой связи, обеспечивающий сквозную доставку данных.
TCP организует данные таким образом, чтобы их можно было передавать между сервером и клиентом. Он гарантирует целостность данных, передаваемых по сети. Перед передачей данных TCP устанавливает соединение между источником и получателем, которое остается активным до тех пор, пока не начнется обмен данными. Затем он разбивает большие объемы данных на более мелкие пакеты, обеспечивая при этом целостность данных на протяжении всего процесса.
В результате все протоколы высокого уровня, которым необходимо передавать данные, используют протокол TCP. Примеры включают методы однорангового обмена, такие как протокол передачи файлов (FTP), Secure Shell (SSH) и Telnet. Он также используется для отправки и получения электронной почты через протокол доступа к сообщениям в Интернете (IMAP), протокол почтового отделения (POP) и простой протокол передачи почты (SMTP), а также для доступа в Интернет через протокол передачи гипертекста (HTTP).
Альтернативой TCP является протокол пользовательских дейтаграмм (UDP), который используется для установления соединений с малой задержкой между приложениями и сокращения времени передачи. TCP может быть дорогостоящим сетевым инструментом, поскольку он включает отсутствующие или поврежденные пакеты и защищает доставку данных с помощью элементов управления, таких как подтверждения, запуск соединения и управление потоком.
UDP не обеспечивает ошибочное соединение или упорядочивание пакетов, а также не сигнализирует адресату перед доставкой данных, что делает его менее надежным, но менее дорогим. Таким образом, это хороший вариант для срочных ситуаций, таких как поиск в системе доменных имен (DNS), передача голоса по интернет-протоколу (VoIP) и потоковое мультимедиа.
Интернет-протокол (IP) — это метод отправки данных с одного устройства на другое через Интернет. Каждое устройство имеет IP-адрес, который однозначно идентифицирует его и позволяет ему взаимодействовать и обмениваться данными с другими устройствами, подключенными к Интернету.
IP отвечает за определение того, как приложения и устройства обмениваются пакетами данных друг с другом. Это основной протокол связи, отвечающий за форматы и правила обмена данными и сообщениями между компьютерами в одной сети или нескольких сетях, подключенных к Интернету. Он делает это с помощью набора протоколов Интернета (TCP/IP), группы протоколов связи, разделенных на четыре уровня абстракции.
IP — это основной протокол интернет-уровня TCP/IP. Его основная цель заключается в доставке пакетов данных между исходным приложением или устройством и пунктом назначения с использованием методов и структур, которые размещают теги, такие как адресная информация, в пакетах данных.
TCP и IP — это отдельные протоколы, которые работают вместе для обеспечения доставки данных по назначению в сети. IP получает и определяет адрес — IP-адрес — приложения или устройства, на которое должны быть отправлены данные. Затем TCP отвечает за транспортировку и маршрутизацию данных через сетевую архитектуру и обеспечение их доставки целевому приложению или устройству, определенному IP.
Другими словами, IP-адрес подобен номеру телефона, присвоенному смартфону. TCP — это компьютерная сетевая версия технологии, используемой для того, чтобы смартфон звонил и позволял его пользователю разговаривать с человеком, который ему звонил. Эти два протокола часто используются вместе и полагаются друг на друга, чтобы данные имели пункт назначения и безопасно доходили до него, поэтому этот процесс часто называют TCP/IP.
Модель TCP/IP является методом передачи данных в Интернете по умолчанию. Он был разработан Министерством обороны США для обеспечения точной и корректной передачи данных между устройствами. Он разбивает сообщения на пакеты, чтобы избежать повторной отправки всего сообщения в случае возникновения проблемы во время передачи. Пакеты автоматически пересобираются, как только они достигают места назначения. Каждый пакет может проходить по другому маршруту между исходным и конечным компьютером, в зависимости от того, становится ли исходный маршрут перегруженным или недоступным.
TCP/IP делит коммуникационные задачи на уровни, что обеспечивает стандартизацию процесса, при этом поставщики аппаратного и программного обеспечения не занимаются самоуправлением. Пакеты данных должны пройти через четыре уровня, прежде чем они будут получены целевым устройством, затем протокол TCP/IP проходит через уровни в обратном порядке, чтобы вернуть сообщению исходный формат.
В качестве протокола, основанного на соединении, TCP устанавливает и поддерживает соединение между приложениями или устройствами, пока они не закончат обмен данными. Он определяет, как исходное сообщение должно быть разбито на пакеты, нумерует и повторно собирает пакеты и отправляет их на другие устройства в сети, такие как маршрутизаторы, шлюзы безопасности и коммутаторы, а затем к месту назначения. TCP также отправляет и получает пакеты на сетевом уровне, обрабатывает передачу любых отброшенных пакетов, управляет потоком и гарантирует, что все пакеты достигнут пункта назначения.
Хорошим примером того, как это работает на практике, является отправка электронной почты с помощью SMTP с почтового сервера. Чтобы начать процесс, уровень TCP на сервере делит сообщение на пакеты, нумерует их и пересылает на уровень IP, который затем транспортирует каждый пакет на сервер электронной почты назначения. Когда пакеты прибывают, они возвращаются на уровень TCP для повторной сборки в исходный формат сообщения и возвращаются на сервер электронной почты, который доставляет сообщение в почтовый ящик пользователя.
TCP/IP использует трехстороннее рукопожатие для установления соединения между устройством и сервером, что обеспечивает одновременную передачу нескольких соединений TCP-сокета в обоих направлениях. И устройство, и сервер должны синхронизировать и подтверждать пакеты до начала связи, после чего они могут согласовывать, разделять и передавать соединения сокетов TCP.
Модель TCP/IP определяет, как устройства должны передавать данные между собой, и обеспечивает связь по сетям и на большие расстояния. Модель представляет, как данные обмениваются и организуются в сетях. Он разделен на четыре уровня, которые устанавливают стандарты для обмена данными и представляют, как данные обрабатываются и упаковываются при доставке между приложениями, устройствами и серверами.
Ниже перечислены четыре уровня модели TCP/IP:
- Уровень канала передачи данных. Уровень канала передачи данных определяет способ отправки данных, обрабатывает физический процесс отправки и получения данных и отвечает за передачу данных между приложениями или устройств в сети. Это включает в себя определение того, как данные должны сигнализироваться аппаратным обеспечением и другими передающими устройствами в сети, такими как драйвер устройства компьютера, кабель Ethernet, карта сетевого интерфейса (NIC) или беспроводная сеть. Он также называется канальным уровнем, уровнем доступа к сети, уровнем сетевого интерфейса или физическим уровнем и представляет собой комбинацию физического уровня и уровня канала передачи данных модели взаимодействия открытых систем (OSI), которая стандартизирует коммуникационные функции для вычислений и телекоммуникаций. системы.
- Интернет-уровень: Интернет-уровень отвечает за отправку пакетов из сети и контроль их перемещения по сети, чтобы обеспечить их достижение пункта назначения. Он предоставляет функции и процедуры для передачи последовательностей данных между приложениями и устройствами по сети.
- Транспортный уровень. Транспортный уровень отвечает за обеспечение прочного и надежного соединения для передачи данных между исходным приложением или устройством и его предполагаемым пунктом назначения. Это уровень, на котором данные делятся на пакеты и нумеруются для создания последовательности. Затем транспортный уровень определяет, сколько данных должно быть отправлено, куда они должны быть отправлены и с какой скоростью. Он гарантирует, что пакеты данных отправляются без ошибок и в определенной последовательности, и получает подтверждение того, что целевое устройство получило пакеты данных.
- Прикладной уровень. Прикладной уровень относится к программам, которым требуется протокол TCP/IP для связи друг с другом. Это уровень, с которым обычно взаимодействуют пользователи, например системы электронной почты и платформы обмена сообщениями. Он объединяет сеансовый, презентационный и прикладной уровни модели OSI.
Пакеты данных, отправляемые по протоколу TCP/IP, не являются конфиденциальными, то есть их можно увидеть или перехватить. По этой причине крайне важно избегать использования общедоступных сетей Wi-Fi для отправки личных данных и обеспечивать шифрование информации. Одним из способов шифрования данных, передаваемых через TCP/IP, является использование виртуальной частной сети (VPN).
Адрес TCP/IP может потребоваться для настройки сети и, скорее всего, потребуется в локальной сети.
Поиск общедоступного IP-адреса — это простой процесс, который можно обнаружить с помощью различных онлайн-инструментов. Эти инструменты быстро определяют IP-адрес используемого устройства, а также IP-адрес хоста пользователя, интернет-провайдера (ISP), удаленный порт и тип используемого браузера, устройства и операционной системы.
Другой способ обнаружения TCP/IP — через страницу администрирования маршрутизатора, на которой отображается текущий общедоступный IP-адрес пользователя, IP-адрес маршрутизатора, маска подсети и другая сетевая информация.
Fortinet позволяет организациям безопасно обмениваться данными и передавать их по модели TCP/IP с помощью своих VPN-решений FortiGate для защиты интернет-протокола (IPsec)/уровня защищенных сокетов (SSL). Высокопроизводительные, масштабируемые крипто-VPN компании Fortinet защищают организации и их пользователей от сложных кибератак, таких как атаки типа «человек посередине» (MITM), а также от угрозы потери данных, когда данные передаются с высокой скоростью. Это очень важно для данных, передаваемых через TCP/IP, который не защищает пакеты данных во время их движения.
Решения Fortinet VPN защищают связь организаций через Интернет, по нескольким сетям и между конечными точками. Он делает это с помощью технологий IPsec и SSL, используя аппаратное ускорение Fortinet FortiASIC, чтобы гарантировать высокопроизводительную связь и конфиденциальность данных.
Виртуальные частные сети Fortinet маскируют IP-адрес пользователя и создают частное соединение для обмена данными независимо от безопасности используемого интернет-соединения. Они устанавливают безопасные соединения, шифруя данные, передаваемые между приложениями и устройствами. Это устраняет риск раскрытия конфиденциальных данных третьим лицам при передаче по TCP/IP, а также скрывает историю посещенных страниц пользователей, IP-адреса, местоположения, действия в Интернете и другую информацию об устройстве.
Для чего используется TCP?
TCP позволяет передавать данные между приложениями и устройствами в сети и используется в модели TCP/IP. Он предназначен для разбивки сообщения, такого как электронная почта, на пакеты данных, чтобы гарантировать, что сообщение успешно и как можно быстрее достигнет адресата.
Что означает TCP?
TCP, что означает «протокол управления передачей», представляет собой стандарт связи для доставки данных и сообщений по сетям.