ПЕРИОДИЧЕСКАЯ ТАБЛИЦА МЕНДЕЛЕЕВА. Таблица менделеева хром
Периодическая система элементов Менделеева - Хром | Учеба-Легко.РФ
Cr | 24 |
Хром | |||||||
to кип. (oС) | 2680 | Степ.окис. | +2 +3 +6 (+4 +5 +1) | ||||||
51,9961 | to плав.(oС) | 1890 | Плотность | 7140 | |||||
3d44s2 | ОЭО | 1,56 | в зем. коре | 0,0200 % | |||||
Перелистайте любой металлургический справочник, и среди многочисленных марок сталей вы, безусловно, не раз встретите такие, в которые входит буква «X»: Х18Н10Т, Х12М, ОХ23Ю5, ШХ15, 8Х4В4Ф1, Х14Г14НЗТ, 12Х2НВФА, ЗОХМЮА и многие другие. Для несведущего в этой области человека такой «тайный шифр» понятен не больше, чем китайские иероглифы. Но, как музыкант, читая ноты, слышит притаившуюся в них музыку, так и металлург легко разбирается в этих на первый взгляд случайных комбинациях букв и цифр. Даже беглого взгляда достаточно, чтобы увидеть общее для перечисленных марок сталей: все они в том или ином количестве содержат элемент хром (о чем свидетельствует буква «X»).
Вместе со своими «коллегами» по легированию—никелем, вольфрамом, молибденом, ванадием, титаном, цирконием, ниобием и другими элементами — хром позволяет выплавлять стали самого разнообразного назначения. Применяемая в современной технике сталь должна многое «уметь»: сопротивляться колоссальным давлениям, противостоять химическим «агрессорам», не зная усталости, выдерживать длительные перегрузки, обладать хорошей обрабатываемостью, не бояться ни жары и ни холода. В эту богатую гамму свойств стали вносит свою лепту и хром.
...Еще в 1766 году петербургский профессор химии И. Г. Леман описал новый минерал, найденный на Урале на Березовском руднике, в 15 километрах от Екатеринбурга (ныне Свердловск). Обрабатывая камень соляной кислотой, Леман получил изумрудно-зеленый раствор, а в образовавшемся белом осадке обнаружил свинец. Спустя несколько лет, в 1770 году, Березовские рудники описал академик П. С. Паллас. «Березовские копи, — писал он, — состоят из четырех рудников, которые разрабатываются с 1752 года. В них наряду с золотом добываются серебро и свинцовые руды, а также находят замечательный красный свинцовый минерал, который не был обнаружен больше ни в одном другом руднике России. Эта свинцовая руда бывает разного цвета (иногда похожего на цвет киновари), тяжелая и полупрозрачная... Иногда маленькие неправильные пирамидки этого минерала бывают вкраплены в кварц подобно маленьким рубинам. При размельчении в порошок она дает красивую желтую краску...». Минерал был назван «сибирским красным свинцом». Впоследствии за ним закрепилось название «крокоит».
Образец этого минерала был в конце XVIII века привезен Палласом в Париж. Крокоитом заинтересовался известный французский химик Луи Никола Воклен. В 1796 году он подверг минерал химическому анализу. «Все образцы этого вещества, которые имеются в нескольких минералогических кабинетах Европы, — писал Воклен в своем отчете, — были получены из этого (т. е. Березовского.—С. В.) золотого рудника. Раньше рудник был очень богат этим минералом, однако говорят, что несколько лет назад запасы минерала в руднике истощились и теперь этот минерал покупают на вес золота, в особенности если он желтый. Образцы минерала, не имеющие правильных очертаний или расколотые на кусочки, годятся для использования их в живописи, где они ценятся за свою желто-оранжевую окраску, не изменяющуюся на воздухе... Красивый красный цвет, прозрачность и кристаллическая форма сибирского красного минерала заставила минералогов заинтересоваться его природой и местом, где он был найден; большой удельный вес и сопутствующая ему свинцовая руда, естественно, заставляли предполагать о наличии свинца в этом минерале...»
В 1797 году Воклен повторил анализ. Растертый в порошок крокоит он поместил в раствор углекислого калия и прокипятил. В результате опыта ученый получил углекислый свинец и желтый раствор, в котором содержалась калиевая соль неизвестной тогда кислоты. При добавлении к раствору ртутной соли образовывался красный осадок, после реакции со свинцовой солью появлялся желтый осадок, а введение хлористого олова окрашивало раствор в зеленый цвет. После осаждения соляной кислотой свинца Воклен выпарил фильтрат, а выделившиеся красные кристаллы (это был хромовый ангидрид) смешал с углем, поместил в графитовый тигель и нагрел до высокой температуры. Когда опыт был закончен, ученый обнаружил в тигле множество серых сросшихся металлических иголок, весивших в 3 раза меньше, чем исходное вещество. Так впервые был выделен новый элемент. Один из друзей Воклена предложил ему назвать элемент хромом (по-гречески «хрома» — окраска) из-за яркого разнообразного цвета его соединений. Между прочим, слог «хром» в значении «окрашенный» входит во многие термины, не связанные с элементом хромом: слово «хромосома», например, в переводе с греческого означает «тело, которое окрашивается»; для получения цветного, изображения пользуются прибором хромоскопом; фотолюбителям хорошо известны пленки «изопанхром», «панхром», «ортохром»; яркие образования в атмосфере Солнца астрофизики называют хромосферными вспышками и т. д.
Сначала Воклену не понравилось предложенное название, поскольку открытый им металл имел скромную серую окраску и как будто не оправдывал своего имени. Но друзья все же сумели уговорить Воклена и, после того как французская Академия наук по всей форме зарегистрировала его открытие, химики всего мира внесли слово «хром» в списки известных науке элементов.
Фортуна оказалась достаточно благосклонной к новому металлу. Высокая температура плавления хрома, его чрезвычайно большая твердость, легкость образования сплавов с другими металлами, в частности с железом, заинтересовали прежде всего металлургов. Годы не охладили этого интереса: и в наши дни среди разнообразных направлений использования хрома металлургия по-прежнему продолжает занимать ведущее место.
Хром обладает всеми характерными свойствами металлов — хорошо проводит тепло, почти не оказывает сопротивления электрическому току, имеет присущий большинству металлов блеск. Любопытна одна особенность хрома: при температуре около 37°С он ведет себя явно «вызывающе» — многие его физические свойства резко, скачкообразно меняются. В этой температурной точке внутреннее трение хрома достигает максимума, а модуль упругости падает до минимальных значений. Так же внезапно изменяются электропроводность, коэффициент линейного расширения, термоэлектродвижущая сила. Пока ученые не могут объяснить эту аномалию.
Даже незначительные примеси делают хром очень хрупким, поэтому в качестве конструкционного материала его практически не применяют, зато как легирующий элемент он издавна пользуется у металлургов почетом. Небольшие добавки его придают стали твердость и износостойкость. Такие свойства присущи шарикоподшипниковой стали, в состав которой, наряду с хромом (до 1,5%), входит углерод (около 1%). Образующиеся в ней карбиды хрома отличаются исключительной твердостью — они-то и позволяют металлу уверенно сопротивляться одному из опаснейших врагов — износу.
«Нержавейка»—сталь, отлично противостоящая коррозии и окислению, содержит примерно 17—19% хрома и 8—13% никеля. Но этой стали углерод вреден: карбидообразующие «наклонности» хрома приводят к тому, что большие количества этого элемента связываются в карбиды, выделяющиеся на границах зерен стали, а сами зерна оказываются бедны хромом и не могут стойко обороняться против натиска кислот и кислорода. Поэтому содержание углерода в нержавеющей стали должно быть минимальным (не более 0,1%).
При высоких температурах сталь может покрываться «чешуей» окалины. В некоторых машинах детали нагреваются до сотен градусов. Чтобы сталь, из которой сделаны эти детали, не «страдала» окалинообразованием, в нее вводят 25—30% хрома. Такая сталь выдерживает температуры до 1000°С!
В качестве нагревательных элементов успешно служат сплавы хрома с никелем — нихромы. Добавка к хромоникелевым сплавам кобальта и молибдена придает металлу способность переносить большие нагрузки при| 650—900° С. Из этих сплавов делают, например, лопатки газовых турбин.1 Сплав кобальта, молибдена и хрома («комохром») безвреден для человеческого организма и поэтому используется в восстановительной хирургии.
Одна из американских фирм недавно создала новые материалы, магнитные свойства которых изменяются под влиянием температуры. Эти материалы, основу которых составляют соединения марганца, хрома и сурьмы, по мнению ученых, найдут применение в различных автоматических устройствах, чувствительных к колебаниям температуры, и смогут ^ заменить более дорогие термоэлементы.
Основная часть добываемой в мире хромистой руды поступает сегодня на ферросплавные заводы, где выплавляются различные сорта феррохрома и металлического хрома.
Впервые феррохром был получен в 1820 году восстановлением смеси окислов железа и хрома древесным углем в тигле. В 1854 году удалось получить чистый металлический хром электролизом водных растворов хлорида хрома. К этому же времени относятся и первые попытки выплавить углеродистый феррохром в доменной печи. В 1865 году был выдан первый патент на хромистую сталь. Потребность в феррохроме начала резко расти.
Важную роль в развитии производства феррохрома сыграл электрический ток, точнее электротермический способ получения металлов и сплавов. В 1893 году французский ученый Муассан выплавил в электропечи углеродистый феррохром, содержащий 60% хрома и 6% углерода.
В дореволюционной России ферросплавное производство развивалось черепашьими темпами. Мизерные количества ферросилиция и ферромарганца выплавляли доменные печи южных заводов. В 1910 году на берегу реки Сатки (Южный Урал) был построен маленький электрометаллургический завод «Пороги», который стал производить феррохром, а затем и ферросилиций. Но об удовлетворении нужд своей промышленности не могло быть и речи: потребность России в ферросплавах приходилось почти полностью покрывать ввозом их из других стран.
Молодое Советское государство не могло зависеть от капиталистических стран в такой важнейшей отрасли промышленности, как производство качественных сталей, являющейся основным потребителем ферросплавов. Чтобы воплотить в жизнь грандиозные планы индустриализации нашей страны, требовалась сталь—конструкционная, инструментальная, нержавеющая, шарикоподшипниковая, автотракторная. Один из важнейших компонентов этих сталей — хром.
Уже в 1927—1928 годах началось проектирование и строительство ферросплавных заводов. В 1931 году вошел в строй Челябинский завод ферросплавов, ставший первенцем нашей ферросплавной промышленности. Один из создателей советской качественной металлургии член-корреспондент Академии наук СССР В. С. Емельянов в эти годы находился в Германии, куда он был направлен для изучения опыта зарубежных специалистов.
В своих воспоминаниях он рассказывает о любопытном разговоре, который произошел у него с одним из металлургов: «В 1933 году на небольшом немецком заводе я спросил главного инженера:
Кому вы продаете изготовляемый на заводе феррохром?
Он принялся перечислять:
— Примерно пять процентов всего производства мы поставляем близлежащим химическим заводам, два процента у нас покупает завод Беккера, около трех процентов...
Перебив его, я спросил:
— Ну, а много ли у вас покупает Советский Союз?
— А Советский Союз когда как. Семьдесят пять—восемьдесят процентов нашей продукции мы отправляем на ваши заводы. Да мы и работаем-то на уральской хромистой руде».
Да, в то время наша хромистая руда вывозилась не только в Германию, но и в Швецию, Италию, США. И у них же нам приходилось покупать феррохром.
Но когда вслед за Челябинским в 1933 году были построены еще два ферросплавных завода—в Запорожье и Зестафони, наша страна не только прекратила ввозить важнейшие ферросплавы, в том числе и феррохром, но и получила возможность экспортировать их за границу. Качественная металлургия страны была практически полностью обеспечена необходимыми материалами отечественного производства.
Выступая на XVII съезде партии, нарком тяжелой промышленности Серго Орджоникидзе сказал: «...если бы у нас не было качественных сталей, у нас не было бы автотракторной промышленности. Стоимость расходуемых нами сейчас качественных сталей определяется свыше 400 миллионов рублей. Если бы их надо было ввозить—это 400 миллионов рублей ежегодно, — мы бы, черт побери, в кабалу попали к капиталистам».
В 1936 году в Казахстане, в районе Актюбинска, были найдены огромные залежи хромита — основного промышленного сырья для производства феррохрома. В годы войны на базе этого месторождения был построен Актюбинский ферросплавный завод, который впоследствии стал крупнейшим предприятием по выпуску феррохрома и хрома всех марок.
Богат хромистой рудой и Урал. Здесь расположено большое число месторождений этого металла: Сарановское, Верблюжьегорское, Алапаевское, Монетная дача, Халиловское и др. По разведанным запасам хромистых руд Россия занимает ведущее место в мире.
Руды хрома имеются в Турции, Индии, Новой Каледонии, на Кубе, в Греции, Югославии, некоторых странах Африки. В то же время такие промышленные страны, как Англия, Франция, ФРГ, Италия, Швеция, Норвегия, совершенно лишены хромового сырья, а США и Канада располагают лишь очень бедными рудами, практически не пригодными для производства феррохрома. Всего же на долю хрома приходится 0,02% земной коры.
Хромиты широко используют и в огнеупорной промышленности. Магнезитохромитовый кирпич—отличный огнеупорный материал для футеровки мартеновских печей и других металлургических агрегатов. Этот материал обладает высокой термостойкостью, ему не страшны многократные резкие изменения температуры.
Химики используют хромиты для получения бихроматов калия и натрия, а также хромовых квасцов, которые применяются для дубления кожи, придающего ей красивый блеск и прочность. Такую кожу называют «хромом», а сапоги из нее «хромовыми».
Как бы оправдывая свое название, хром принимает деятельное участие в производстве красителей для стекольной, керамической, текстильной промышленности.
Каждый вечер над Москвой вспыхивают рубиновые звезды Кремля. В мире драгоценных камней рубину принадлежит второе место после алмаза. По древнему индийскому преданию, рубины образовались из капель крови, пролитой богами: «Падают капли тяжелой крови на лоно реки, в глубокие воды, в отражение прекрасных пальм. И назвалась река с тех пор Раванагангой, и загорелись с тех пор эти капли крови, превращенные в камни рубина, и горели они с наступлением темноты сказочным огнем, горящим внутри, и пронизывались воды этими огненными лучами...», — так рассказывает о происхождении рубина древняя восточная легенда. В наши дни технология получения чудесного красного камня значительно упростилась и богам уже не надо проливать свою священную кровь: для этого в окись алюминия вводят дозированную добавку окиси хрома, — ему-то и обязаны рубиновые кристаллы своим чарующим цветом. Но искусственные рубины ценятся не только за свои «внешние данные»: рожденный с их помощью лазерный луч способен буквально творить чудеса. Подобно волшебному лучу, созданному гиперболоидом инженера Гарина и богатой фантазией Алексея Толстого, луч лазера может разрезать любые металлы с той же легкостью, с какой ножницы режут бумагу, или прошивать в алмазах, корундах и других «крепких орешках» тончайшие отверстия, не проявляя при этом ни малейшего почтения к их всемирно известной твердости.
Окись хрома позволила тракторостроителям значительно сократить сроки обкатки двигателей. Обычно эта операция, во время которой все трущиеся детали должны «привыкнуть» друг к другу, продолжалась довольно долго и это, конечно, не очень устраивало работников тракторных заводов. Выход из положения был найден, когда удалось разработать новую топливную присадку, в состав которой вошла окись хрома. Секрет действия присадки прост: при сгорании топлива образуются мельчайшие абразивные частицы окиси хрома, которые, оседая на внутренних стенках цилиндров и других подвергающихся трению поверхностях, быстро ликвидируют шероховатости, полируют и плотно подгоняют детали. Эта присадка в сочетании с новым сортом масла позволила в 30 раз сократить продолжительность обкатки.
Недавно окись хрома приобрела еще одну интересную «специальность»: в США изготовлена экспериментальная магнитофонная пленка, рабочий слой которой содержит не частицы окиси железа, как обычно, а Частицы окиси хрома. Замена оказалась удачной — качество звучания резко улучшилось, пленка стала надежнее в работе. Новинкой в первую очередь предполагается обеспечить блоки магнитной памяти электронно-вычислительных машин.
Фотоматериалы и лекарства, катализаторы для химических процессов и металлические покрытия—всюду хром оказывается «при деле». О хромовых покрытиях следует, пожалуй, рассказать подробнее.
Давно было замечено, что хром не только отличается большой твердостью (в этом отношении у него нет конкурентов среди металлов), но и хорошо сопротивляется окислению на воздухе, не взаимодействует с кислотами. Тонкий слой этого металла попробовали электролитически осаждать на поверхность изделий из других материалов, чтобы предохранить их от коррозии, царапин и прочих «травм». Однако хромовые покрытия оказались пористыми, легко отслаивались и не оправдывали возлагаемых на них надежд.
Почти три четверти века бились ученые над проблемой хромирования, и лишь в 20-х годах нашего столетия проблема была решена. Причина неудач заключалась в том, что используемый при этом электролит содержал трехвалентный хром, который не мог создать нужное покрытие. А вот его шестивалентному «собрату» такая задача оказалась по плечу. С этого времени в качестве электролита начали применять хромовую кислоту — в ней валентность хрома равна 6. Толщина защитных покрытий (например, на некоторых наружных деталях автомобилей, мотоциклов, велосипедов) составляет до 0,1 миллиметра. Но иногда хромовое покрытие используют в декоративных целях — для отделки часов, дверных ручек и других предметов, не подвергающихся серьезной опасности. В таких случаях на изделие наносят тончайший слой хрома (0,0002—0,0005 миллиметра).
Существует и другой способ хромирования — диффузионный, протекающий не в гальванических ваннах, а в печах. Первоначально стальную деталь помещали в порошок хрома и нагревали в восстановительной атмосфере до высоких температур. При этом на поверхности детали появлялся обогащенный хромом слой, по твердости и коррозионной стойкости значительно превосходящий сталь, из которой сделана деталь. Но (и здесь нашлись свои «но») при температуре примерно 1000°С хромовый порошок спекается и, кроме того, на поверхности покрываемого металла образуются карбиды, препятствующие диффузии хрома в сталь. Пришлось подыскивать другой носитель хрома; вместо порошка для этой цели начали использовать летучие галоидные соли хрома — хлорид или иодид, что позволило снизить температуру процесса.
Хлорид (или иодид) хрома получают непосредственно в установке для хромирования, пропуская пары соответствующей галоидоводородной кислоты через порошкообразный хром или феррохром. Образующийся газообразный хлорид обволакивает хромируемое изделие, и поверхностный слой насыщается хромом. Такое покрытие гораздо прочнее связано с основным материалом, чем гальваническое.
Литовские химики разработали способ создания многослойной «кольчуги» для особо ответственных деталей. Тончайший верхний слой этого покрытия (под микроскопом его поверхность и в самом деле напоминает кольчугу) состоит из хрома: в процессе службы он первым «принимает огонь на себя», но пока хром окисляется, проходят многие годы. Тем временем деталь спокойно несет свою ответственную службу.
До последнего времени хромировали только металлические детали. А недавно советские ученые научились наносить хромовую «броню» на изделия из пластмасс. Подвергнутый испытаниям широко известный полимер—полистирол, «одетый» в хром, стал прочнее, для него оказались менее страшными такие известные «враги» конструкционных материалов, как истирание, изгиб, удар. Само собой разумеется, возрос срок службы деталей.
...Прежде чем закончить рассказ о хроме, мы вновь обратимся к воспоминаниям В. С. Емельянова. «Года два назад,—писал ученый в 1967 году, — я узнал глубоко взволновавшую меня новость, оставшуюся в нашей стране — увы! — незамеченной. Мы продали партию феррохрома Англии — стране, которая всегда была для нас символом технического прогресса. И вот теперь Англия покупает наш феррохром! Англичане понимают толк в том, что покупают».
uclg.ru
Таблица Менделеева, химические элементы
Таблица Менделеева — общепринятое графическое выражение Периодического закона, открытого Д.И. Менделеевым в 1869 г. Первоначальный вариант таблицы был разработан Менделеевым в 1869—1871 годах. За время существования было предложено более сотни вариантов её изображения, однако наиболее общепринятый вариант представляет собой двумерную таблицу в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.
Мы постарались описать основные химические элементы Таблицы Менделеева, для подробной информации о них переходите по соответствующей ссылке в таблице. Обращаем ваше внимание, что целью нашего сайта Занимательная химия не является описание химических элементов с научной точки зрения, мы больше сконцентрировались на интересных фактах, которые будут интересны даже детям, не углубляясь в непонятные термины и цифры. Однако, для каждого элемента приводится краткое описание химических свойств в простой и доступной форме.
ГРУППЫ ЭЛЕМЕНТОВ | |||||||||
I | II | III | IV | V | VI | VII | VIII | ||
1 Hводород | 2 Heгелий | ||||||||
3 Liлитий | 4 Beбериллий | 5 Bбор | 6 Суглерод | 7 Nазот | 8 Oкислород | 9 Fфтор | 10Neнеон | ||
11 Naнатрий | 12 Mgмагний | 13 Alалюминий | 14 Siкремний | 15 Pфосфор | 16 Sсера | 17 Clхлор | 18Arаргон | ||
19 Kкалий | 20 Caкальций | 21 Scскандий | 22 Tiтитан | 23 Vванадий | 24 Crхром | 25 Mnмарганец | 26 Feжелезо | 27 Coкобальт | 28 Niникель |
29 Cuмедь | 30 Znцинк | 31 Gaгаллий | 32 Geгерманий | 33 Asмышьяк | 34 Seселен | 35 Brбром | 36 Krкриптон | ||
37 Rbрубидий | 38 Srстронций | 39 Yиттрий | 40 Zrцирконий | 41 Nbниобий | 42 Moмолибден | 43 Tcтехнеций | 44 Ruрутений | 45 Rhродий | 46 Pdпалладий |
47 Agсеребро | 48 Cdкадмий | 49 Inиндий | 50 Snолово | 51 Sbсурьма | 52 Teтеллур | 53 Iиод | 54Xeксенон | ||
55 Csцезий | 56 Baбарий | 57 Laлантан × | 72 Hfгафний | 73 Taтантал | 74 Wвольфрам | 75 Reрений | 76 Osосмий | 77 Irиридий | 78 Ptплатина |
79 Auзолото | 80 Hgртуть | 81 Tlталлий | 82 Pbсвинец | 83 Biвисмут | 84 Poполоний | 85 Atастат | 86Rnрадон | ||
87 Frфранций | 88 Raрадий | 89 Acактиний ×× | 104 Rfрезерфордий | 105 Dbдубний | 106 Sgсиборгий | 107 Bhборий | 108 Hsхассий | 109 Mtмейтнерий | 110 Dsдармштадтий |
111 Rgрентгений | 112 Сnкоперниций | 113 Nhнихоний | 114Flфлеровий | 115Mcмосковий | 116Lvливерморий | 117 Tnтеннесин | 118Ogоганессон |
57 Laлантан | 58 Ceцерий | 59 Prпразеодим | 60 Ndнеодим | 61 Pmпрометий | 62 Smсамарий | 63 Euевропий | 64 Gdгадолиний | 65 Tbтербий | 66 Dyдиспрозий | 67 Hoгольмий | 68 Erэрбий | 69 Tmтулий | 70 Ybиттербий | 71 Luлютеций |
89 Acактиний | 90 Thторий | 91 Paпротактиний | 92 Uуран | 93 Npнептуний | 94 Puплутоний | 95 Amамериций | 96 Cmкюрий | 97 Bkберклий | 98 Cfкалифорний | 99 Esэйнштейний | 100 Fmфермий | 101 Mdменделевий | 102 Noнобелий | 103 Lrлоуренсий |
Таблица Менделеева и её значение
Открытие Периодического закона стало важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях. Появление периодической системы и открытие периодического закона открыло новую, подлинно научную эру в истории химии и ряде смежных наук — взамен разрозненных сведений об элементах и соединениях была создана стройная таблица Менделеева, на основе которой стало возможным обобщать, делать выводы и предвидеть открытие новых химических элементов.
Список химических элементов Таблицы Менделеева
Список химических элементов упорядочен в порядке возрастания атомных номеров, приводятся обозначения элемента в Таблице Менделеева, латинское и русское названия.
Z | Символ | Name | Название |
1 | H | Hydrogen | Водород |
2 | He | Helium | Гелий |
3 | Li | Lithium | Литий |
4 | Be | Beryllium | Бериллий |
5 | B | Boron | Бор |
6 | C | Carbon | Углерод |
7 | N | Nitrogen | Азот |
8 | O | Oxygen | Кислород |
9 | F | Fluorine | Фтор |
10 | Ne | Neon | Неон |
11 | Na | Sodium | Натрий |
12 | Mg | Magnesium | Магний |
13 | Al | Aluminium | Алюминий |
14 | Si | Silicon | Кремний |
15 | P | Phosphorus | Фосфор |
16 | S | Sulfur | Сера |
17 | Cl | Chlorine | Хлор |
18 | Ar | Argon | Аргон |
19 | K | Potassium | Калий |
20 | Ca | Calcium | Кальций |
21 | Sc | Scandium | Скандий |
22 | Ti | Titanium | Титан |
23 | V | Vanadium | Ванадий |
24 | Cr | Chromium | Хром |
25 | Mn | Manganese | Марганец |
26 | Fe | Iron | Железо |
27 | Co | Cobalt | Кобальт |
28 | Ni | Nickel | Никель |
29 | Cu | Copper | Медь |
30 | Zn | Zinc | Цинк |
31 | Ga | Gallium | Галлий |
32 | Ge | Germanium | Германий |
33 | As | Arsenic | Мышьяк |
34 | Se | Selenium | Селен |
35 | Br | Bromine | Бром |
36 | Kr | Krypton | Криптон |
37 | Rb | Rubidium | Рубидий |
38 | Sr | Strontium | Стронций |
39 | Y | Yttrium | Иттрий |
40 | Zr | Zirconium | Цирконий |
41 | Nb | Niobium | Ниобий |
42 | Mo | Molybdenum | Молибден |
43 | Tc | Technetium | Технеций |
44 | Ru | Ruthenium | Рутений |
45 | Rh | Rhodium | Родий |
46 | Pd | Palladium | Палладий |
47 | Ag | Silver | Серебро |
48 | Cd | Cadmium | Кадмий |
49 | In | Indium | Индий |
50 | Sn | Tin | Олово |
51 | Sb | Antimony | Сурьма |
52 | Te | Tellurium | Теллур |
53 | I | Iodine | Иод |
54 | Xe | Xenon | Ксенон |
55 | Cs | Caesium | Цезий |
56 | Ba | Barium | Барий |
57 | La | Lanthanum | Лантан |
58 | Ce | Cerium | Церий |
59 | Pr | Praseodymium | Празеодим |
60 | Nd | Neodymium | Неодим |
61 | Pm | Promethium | Прометий |
62 | Sm | Samarium | Самарий |
63 | Eu | Europium | Европий |
64 | Gd | Gadolinium | Гадолиний |
65 | Tb | Terbium | Тербий |
66 | Dy | Dysprosium | Диспрозий |
67 | Ho | Holmium | Гольмий |
68 | Er | Erbium | Эрбий |
69 | Tm | Thulium | Тулий |
70 | Yb | Ytterbium | Иттербий |
71 | Lu | Lutetium | Лютеций |
72 | Hf | Hafnium | Гафний |
73 | Ta | Tantalum | Тантал |
74 | W | Tungsten | Вольфрам |
75 | Re | Rhenium | Рений |
76 | Os | Osmium | Осмий |
77 | Ir | Iridium | Иридий |
78 | Pt | Platinum | Платина |
79 | Au | Gold | Золото |
80 | Hg | Mercury | Ртуть |
81 | Tl | Thallium | Таллий |
82 | Pb | Lead | Свинец |
83 | Bi | Bismuth | Висмут |
84 | Po | Polonium | Полоний |
85 | At | Astatine | Астат |
86 | Rn | Radon | Радон |
87 | Fr | Francium | Франций |
88 | Ra | Radium | Радий |
89 | Ac | Actinium | Актиний |
90 | Th | Thorium | Торий |
91 | Pa | Protactinium | Протактиний |
92 | U | Uranium | Уран |
93 | Np | Neptunium | Нептуний |
94 | Pu | Plutonium | Плутоний |
95 | Am | Americium | Америций |
96 | Cm | Curium | Кюрий |
97 | Bk | Berkelium | Берклий |
98 | Cf | Californium | Калифорний |
99 | Es | Einsteinium | Эйнштейний |
100 | Fm | Fermium | Фермий |
101 | Md | Mendelevium | Менделевий |
102 | No | Nobelium | Нобелий |
103 | Lr | Lawrencium | Лоуренсий |
104 | Rf | Rutherfordium | Резерфордий |
105 | Db | Dubnium | Дубний |
106 | Sg | Seaborgium | Сиборгий |
107 | Bh | Bohrium | Борий |
108 | Hs | Hassium | Хассий |
109 | Mt | Meitnerium | Мейтнерий |
110 | Ds | Darmstadtium | Дармштадтий |
111 | Rg | Roentgenium | Рентгений |
112 | Cn | Copernicium | Коперниций |
113 | Nh | Nihonium | Нихоний |
114 | Fl | Flerovium | Флеровий |
115 | Mc | Moscovium | Московий |
116 | Lv | Livermorium | Ливерморий |
117 | Ts | Tennessine | Теннесин |
118 | Og | Oganesson | Оганессон |
Таблица Менделеева в хорошем качестве
Предлагаем вам скачать несколько вариантов таблицы Менделеева в хорошем качестве, которые можно распечатать на принтере большого формата, как в черно-белом так и в цветном вариантах.
www.alto-lab.ru
Таблица Менделеева для чайников – HIMI4KA
Еще в школе, сидя на уроках химии, все мы помним таблицу на стене класса или химической лаборатории. Эта таблица содержала классификацию всех известных человечеству химических элементов, тех фундаментальных компонентов, из которых состоит Земля и вся Вселенная. Тогда мы и подумать не могли, что таблица Менделеева бесспорно является одним из величайших научных открытий, который является фундаментом нашего современного знания о химии.
Периодическая система химических элементов Д. И. МенделееваНа первый взгляд, ее идея выглядит обманчиво просто: организовать химические элементы в порядке возрастания веса их атомов. Причем в большинстве случаев оказывается, что химические и физические свойства каждого элемента сходны с предыдущим ему в таблице элементом. Эта закономерность проявляется для всех элементов, кроме нескольких самых первых, просто потому что они не имеют перед собой элементов, сходных с ними по атомному весу. Именно благодаря открытию такого свойства мы можем поместить линейную последовательность элементов в таблицу, очень напоминающую настенный календарь, и таким образом объединить огромное количество видов химических элементов в четкой и связной форме. Разумеется, сегодня мы пользуемся понятием атомного числа (количества протонов) для того, чтобы упорядочить систему элементов. Это помогло решить так называемую техническую проблему «пары перестановок», однако не привело к кардинальному изменению вида периодической таблицы.
В периодической таблице Менделеева все элементы упорядочены с учетом их атомного числа, электронной конфигурации и повторяющихся химических свойств. Ряды в таблице называются периодами, а столбцы группами. В первой таблице, датируемой 1869 годом, содержалось всего 60 элементов, теперь же таблицу пришлось увеличить, чтобы поместить 118 элементов, известных нам сегодня.
Периодическая система Менделеева систематизирует не только элементы, но и самые разнообразные их свойства. Химику часто бывает достаточно иметь перед глазами Периодическую таблицу для того, чтобы правильно ответить на множество вопросов (не только экзаменационных, но и научных).
Периодический закон
Существуют две формулировки периодического закона химических элементов: классическая и современная.
Классическая, в изложении его первооткрывателя Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.
Современная: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).
Графическим изображением периодического закона является периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространёнными изображениями периодической системы элементов Д.И. Менделеева являются короткая и длинная формы.
Группы и периоды Периодической системы
Группами называют вертикальные ряды в периодической системе. В группах элементы объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгрупп. Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов. Химические свойства элементов главных и побочных подгрупп значительно различаются.
Периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров. В периодической системе имеются семь периодов: первый, второй и третий периоды называют малыми, в них содержится соответственно 2, 8 и 8 элементов; остальные периоды называют большими: в четвёртом и пятом периодах расположены по 18 элементов, в шестом — 32, а в седьмом (пока незавершенном) — 31 элемент. Каждый период, кроме первого, начинается щелочным металлом, а заканчивается благородным газом.
Физический смысл порядкового номера химического элемента: число протонов в атомном ядре и число электронов, вращающихся вокруг атомного ядра, равны порядковому номеру элемента.
Свойства таблицы Менделеева
Напомним, что группами называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.
Свойства элементов в подгруппах закономерно изменяются сверху вниз:
- усиливаются металлические свойства и ослабевают неметаллические;
- возрастает атомный радиус;
- возрастает сила образованных элементом оснований и бескислородных кислот;
- электроотрицательность падает.
Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).
Оксиды состава R2O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства. Оксиды состава RO2, R2O5, RO3, R2O7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.
Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности Rh5, Rh4, Rh3, RH.
Соединения Rh5 имеют нейтральный характер; Rh4 — слабоосновный; Rh3 — слабокислый; RH — сильнокислый характер.
Напомним, что периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.
В пределах периода с увеличением порядкового номера элемента:
- электроотрицательность возрастает;
- металлические свойства убывают, неметаллические возрастают;
- атомный радиус падает.
Элементы таблицы Менделеева
Щелочные и щелочноземельные элементы
К ним относятся элементы из первой и второй группы периодической таблицы. Щелочные металлы из первой группы — мягкие металлы, серебристого цвета, хорошо режутся ножом. Все они обладают одним-единственным электроном на внешней оболочке и прекрасно вступают в реакцию. Щелочноземельные металлы из второй группы также имеют серебристый оттенок. На внешнем уровне помещено по два электрона, и, соответственно, эти металлы менее охотно взаимодействуют с другими элементами. По сравнению со щелочными металлами, щелочноземельные металлы плавятся и кипят при более высоких температурах.
Показать / Скрыть текст
Щелочные металлы | Щелочноземельные металлы |
Литий Li 3 | Бериллий Be 4 |
Натрий Na 11 | Магний Mg 12 |
Калий K 19 | Кальций Ca 20 |
Рубидий Rb 37 | Стронций Sr 38 |
Цезий Cs 55 | Барий Ba 56 |
Франций Fr 87 | Радий Ra 88 |
Лантаниды (редкоземельные элементы) и актиниды
Лантаниды — это группа элементов, изначально обнаруженных в редко встречающихся минералах; отсюда их название «редкоземельные» элементы. Впоследствии выяснилось, что данные элементы не столь редки, как думали вначале, и поэтому редкоземельным элементам было присвоено название лантаниды. Лантаниды и актиниды занимают два блока, которые расположены под основной таблицей элементов. Обе группы включают в себя металлы; все лантаниды (за исключением прометия) нерадиоактивны; актиниды, напротив, радиоактивны.
Показать / Скрыть текст
Лантаниды | Актиниды |
Лантан La 57 | Актиний Ac 89 |
Церий Ce 58 | Торий Th 90 |
Празеодимий Pr 59 | Протактиний Pa 91 |
Неодимий Nd 60 | Уран U 92 |
Прометий Pm 61 | Нептуний Np 93 |
Самарий Sm 62 | Плутоний Pu 94 |
Европий Eu 63 | Америций Am 95 |
Гадолиний Gd 64 | Кюрий Cm 96 |
Тербий Tb 65 | Берклий Bk 97 |
Диспрозий Dy 66 | Калифорний Cf 98 |
Гольмий Ho 67 | Эйнштейний Es 99 |
Эрбий Er 68 | Фермий Fm 100 |
Тулий Tm 69 | Менделевий Md 101 |
Иттербий Yb 70 | Нобелий No 102 |
Галогены и благородные газы
Галогены и благородные газы объединены в группы 17 и 18 периодической таблицы. Галогены представляют собой неметаллические элементы, все они имеют семь электронов во внешней оболочке. В благородных газахвсе электроны находятся во внешней оболочке, таким образом с трудом участвуют в образовании соединений. Эти газы называют «благородными, потому что они редко вступают в реакцию с прочими элементами; т. е. ссылаются на представителей благородной касты, которые традиционно сторонились других людей в обществе.
Показать / Скрыть текст
Галогены | Благородные газы |
Фтор F 9 | Гелий He 2 |
Хлор Cl 17 | Неон Ne 10 |
Бром Br 35 | Аргон Ar 18 |
Йод I 53 | Криптон Kr 36 |
Астат At 85 | Ксенон Xe 54 |
— | Радон Rn 86 |
Переходные металлы
Переходные металлы занимают группы 3—12 в периодической таблице. Большинство из них плотные, твердые, с хорошей электро- и теплопроводностью. Их валентные электроны (при помощи которых они соединяются с другими элементами) находятся в нескольких электронных оболочках.
Показать / Скрыть текст
Переходные металлы |
Скандий Sc 21 |
Титан Ti 22 |
Ванадий V 23 |
Хром Cr 24 |
Марганец Mn 25 |
Железо Fe 26 |
Кобальт Co 27 |
Никель Ni 28 |
Медь Cu 29 |
Цинк Zn 30 |
Иттрий Y 39 |
Цирконий Zr 40 |
Ниобий Nb 41 |
Молибден Mo 42 |
Технеций Tc 43 |
Рутений Ru 44 |
Родий Rh 45 |
Палладий Pd 46 |
Серебро Ag 47 |
Кадмий Cd 48 |
Лютеций Lu 71 |
Гафний Hf 72 |
Тантал Ta 73 |
Вольфрам W 74 |
Рений Re 75 |
Осмий Os 76 |
Иридий Ir 77 |
Платина Pt 78 |
Золото Au 79 |
Ртуть Hg 80 |
Лоуренсий Lr 103 |
Резерфордий Rf 104 |
Дубний Db 105 |
Сиборгий Sg 106 |
Борий Bh 107 |
Хассий Hs 108 |
Мейтнерий Mt 109 |
Дармштадтий Ds 110 |
Рентгений Rg 111 |
Коперниций Cn 112 |
Металлоиды
Металлоиды занимают группы 13—16 периодической таблицы. Такие металлоиды, как бор, германий и кремний, являются полупроводниками и используются для изготовления компьютерных чипов и плат.
Показать / Скрыть текст
Металлоиды |
Бор B 5 |
Кремний Si 14 |
Германий Ge 32 |
Мышьяк As 33 |
Сурьма Sb 51 |
Теллур Te 52 |
Полоний Po 84 |
Постпереходными металлами
Элементы, называемые постпереходными металлами, относятся к группам 13—15 периодической таблицы. В отличие от металлов, они не имеют блеска, а имеют матовую окраску. В сравнении с переходными металлами постпереходные металлы более мягкие, имеют более низкую температуру плавления и кипения, более высокую электроотрицательность. Их валентные электроны, с помощью которых они присоединяют другие элементы, располагаются только на внешней электронной оболочке. Элементы группы постпереходных металлов имеют гораздо более высокую температуру кипения, чем металлоиды.
Показать / Скрыть текст
Постпереходные металлы |
Алюминий Al 13 |
Галлий Ga 31 |
Индий In 49 |
Олово Sn 50 |
Таллий Tl 81 |
Свинец Pb 82 |
Висмут Bi 83 |
Неметаллы
Из всех элементов, классифицируемых как неметаллы, водород относится к 1-й группе периодической таблицы, а остальные — к группам 13—18. Неметаллы не являются хорошими проводниками тепла и электричества. Обычно при комнатной температуре они пребывают в газообразном (водород или кислород) или твердом состоянии (углерод).
Показать / Скрыть текст
Неметаллы |
Водород H 1 |
Углерод C 6 |
Азот N 7 |
Кислород O 8 |
Фосфор P 15 |
Сера S 16 |
Селен Se 34 |
Флеровий Fl 114 |
Унунсептий Uus 117 |
А теперь закрепите полученные знания, посмотрев видео про таблицу Менделеева и не только.
Отлично, первый шаг на пути к знаниям сделан. Теперь вы более-менее ориентируетесь в таблице Менделеева и это вам очень даже пригодится, ведь Периодическая система Менделеева является фундаментом, на котором стоит эта удивительная наука.
himi4ka.ru
Таблица Менделеева
Периодическая таблица Менделеева
Таблица Менделеева, (или периодическая система химических элементов) - это таблица, которая квалифицирует химические элементы по различным свойствам, зависящим от заряда атомного ядра. Эта система выражает, в виде таблицы, периодический закон химических элементов, который в 1869 году открыл Русский ученый химик Д.И. Менделеев. Самый первый вариант таблицы, был разработан Менделеевым в 1869-1871 годах, он определял зависимость свойств химических элементов, от атомной массы (в то время это называлось атомным весом). Было предложено несколько сотен различных вариантов изображения свойств химических элементов, от аналитических кривых графиков, и до различных геометрических фигур. Но ученые, в конце концов, сошлись во мнении, что самым удобным вариантом будет изображение в виде двухмерной таблицы, в которой каждый столбик будет указывать на физико-химические свойства того или иного элемента, а периоды элементов приближенных друг к другу, будут определять строки таблицы.
Открытие, сделанное Русским химиком Менделеевым, сыграло (безусловно) наиболее важную роль в развитии науки, а именно в развитии атомно-молекулярного учения. Это открытие позволило получить наиболее понятные, и простые в изучении, представления о простых и сложных химических соединениях. Только благодаря таблице мы имеем те понятия об элементах, которыми пользуемся в современном мире. В ХХ веке проявилась прогнозирующая роль периодической системы при оценке химических свойств, трансурановых элементов, показанная еще создателем таблицы.
Разработанная в ХIХ веке, периодическая таблица Менделеева в интересах науки химии, дала готовую систематизацию типов атомов, для развития ФИЗИКИ в ХХ веке (физика атома и ядра атома). В начале ХХ века, ученые физики, путем исследований установили, что порядковый номер, (он же атомный), есть и мера электрического заряда атомного ядра этого элемента. А номер периода (т.е. горизонтального ряда), определяет число электронных оболочек атома. Так же выяснилось, что номер вертикального ряда таблицы определяет квантовую структуру внешней оболочки элемента, (этим самым, элементы одного ряда, обязаны сходством химических свойств).
Открытие Русского ученого, ознаменовало собой, новую эру в истории мировой науки, это открытие позволило не только совершить огромный скачек в химии, но так же было бесценно для ряда других направлений науки. Таблица Менделеева дала стройную систему сведений об элементах, на основе её, появилась возможность делать научные выводы, и даже предвидеть некоторые открытия.
Одна из особенностей периодической таблицы Менделеева, состоит в том, что группа (колонка в таблице), имеет более существенные выражения периодической тенденции, чем для периодов или блоков. В наше время, теория квантовой механики и атомной структуры объясняет групповую сущность элементов тем, что они имеют одинаковые электронные конфигурации валентных оболочек, и как следствие, элементы которые находятся в пределах одой колонки, располагают очень схожими, (одинаковыми), особенностями электронной конфигурации, со схожими химическими особенностями. Так же наблюдается явная тенденция стабильного изменения свойств по мере возрастания атомной массы. Надо заметить, что в некоторых областях периодической таблицы, (к примеру, в блоках D и F), сходства горизонтальные, более заметны, чем вертикальные.
Таблица Менделеева содержит группы, которым присваиваются порядковые номера от 1 до 18 (с лева, на право), согласно международной системе именования групп. В былое время, для идентификации групп, использовались римские цифры. В Америке существовала практика ставить после римской цифры, литер «А» при расположении группы в блоках S и P, или литер «В» - для групп находящихся в блоке D. Идентификаторы, применявшиеся в то время, это то же самое, что и последняя цифра современных указателей в наше время (на пример наименование IVB, соответствует элементам 4 группы в наше время, а IVA – это 14 группа элементов). В Европейских странах того времени, использовалась похожая система, но тут, литера «А» относилась к группам до 10, а литера «В» - после 10 включительно. Но группы 8,9,10 имели идентификатор VIII, как одна тройная группа. Эти названия групп закончили свое существование после того как в 1988 году вступила в силу, новая система нотации ИЮПАК, которой пользуются и сейчас.
Многие группы получили несистематические названия травиального характера, (к примеру – «щелочноземельные металлы», или «галогены», и другие подобные названия). Таких названий не получили группы с 3 по 14, из за того что они в меньшей степени схожи между собой и имеют меньшее соответствие вертикальным закономерностям, их обычно, называют либо по номеру, либо по названию первого элемента группы (титановая, кобальтовая и тому подобно).
Химические элементы относящиеся к одной группе таблицы Менделеева проявляют определенные тенденции по электроотрицательности, атомному радиусу и энергии ионизации. В одной группе, по направлению сверху вниз, радиус атома возрастает, по мере заполнения энергетических уровней, удаляются, от ядра, валентные электроны элемента, при этом снижается энергия ионизации и ослабевают связи в атоме, что упрощает изъятие электронов. Снижается, так же, электроотрицательность , это следствие того, что возрастает расстояние между ядром и валентными электронами. Но из этих закономерностей так же есть исключения, на пример электроотрицательность возрастает, вместо того чтобы убывать, в группе 11, в направлении сверху вниз. В таблице Менделеева есть строка, которая называется «Период».
Среди групп, есть и такие у которых более значимыми являются горизонтальные направления (в отличии от других, у которых большее значение имеют вертикальные направления), к таким группам относится блок F, в котором лантаноиды и актиноиды формируют две важные горизонтальные последовательности.
Элементы показывают определенные закономерности в отношении атомного радиуса, электроотрицательности, энергии ионизации, и в энергии сродства к электрону. Из-за того, что у каждого следующего элемента количество заряженных частиц возрастает, а электроны притягиваются к ядру, атомный радиус уменьшается в направлении слева направо, вместе с этим увеличивается энергия ионизации, при возрастании связи в атоме - возрастает сложность изъятия электрона. Металлам, расположенным в левой части таблицы, характерен меньший показатель энергии сродства к электрону, и соответственно, в правой части показатель энергии сродства к электрону, у не металлов, этот показатель больше, (не считая благородных газов).
Разные области периодической таблицы Менделеева, в зависимости от того на какой оболочке атома, находится последний электрон, и в виду значимости электронной оболочки, принято описывать как блоки.
В S-блок, входит две первые группы элементов, (щелочные и щелочноземельные металлы, водород и гелий).
В P-блок, входят шест последних групп, с 13 по 18 (согласно ИЮПАК, или по системе принятой в Америке - с IIIA до VIIIA), этот блок так же включает в себя все металлоиды.
Блок - D, группы с 3 по 12 (ИЮПАК, или с IIIB до IIB по-американски), в этот блок включены все переходные металлы.
Блок – F, обычно выносится за пределы периодической таблицы, и включает в себя лантаноиды и актиноиды.
tablica-mendeleeva.ru
пе ри од ы | Р Я Д Ы | группы химических элементов | |||||||||||||||||||||||||||||||
I | II | III | IV | V | VI | VII | VIII | ||||||||||||||||||||||||||
I | 1 |
|
| ||||||||||||||||||||||||||||||
II | 2 |
|
|
|
|
|
|
|
| ||||||||||||||||||||||||
III | 3 |
|
|
|
|
|
|
|
| ||||||||||||||||||||||||
IV | 4 |
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
IV | 5 |
|
|
|
|
|
|
|
| ||||||||||||||||||||||||
V | 6 |
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
V | 7 |
|
|
|
|
|
|
|
| ||||||||||||||||||||||||
VI | 8 |
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
VI | 9 |
|
|
|
|
|
|
|
| ||||||||||||||||||||||||
VII | 10 |
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||
VII | 11 |
|
|
|
|
|
|
|
| ||||||||||||||||||||||||
8 | 12 |
|
| ||||||||||||||||||||||||||||||
высшие оксиды | R2O | RO | R2O3 | RO2 | R2O5 | RO3 | R2O7 | RO4 | |||||||||||||||||||||||||
летучие водоро дные соедине ния | Rh5 | Rh4 | h3R | RH |
infotables.ru
таблица Менделеева, описание всех хим.элементов, кислоты и соли, органические и неорганические соединения
24. Хром-Chromium (Сг). |
В 1797 г. французский химик Л. Вокелен впервые исследовал красноватый, тяжелый минерал крокоизит, попавший в его руки из далекой Сибири.
Крокоизит, чаще называемый крокоитом (от греческого "крокос" - шафран), -редкий минерал, найденный на Урале в 40-х года XVIII в. и описанный М. В. Ломоносовым. Затем он был найден в Сибири петербургским профессором химии И. Леманом в 1762 г. От него попал к Вокелену, который открыл в сибирском минерале соединение нового элемента.
Выделить этот элемент в чистом виде он не смог. Пораженный разнообразием окрасок, образуемых разными соединениями вновь открытого элемента, Вокелен назвал его хромом (от греческого слова "хрома" - цвет, краска). В сравнительно чистом виде новый элемент был выделен в 1799 г. Ф. Тассером. Он представлял собой серо-стальной металл с серебристыми блестками в изломе, тугоплавкий (температура плавления 1800° С), не окисляющийся при обычных условиях, с плотностью, почти равной плотности железа (7,8).
Впоследствии было установлено, что твердость хрома наибольшая по сравнению с другими металлами. Необычайно высокая прочность, твердость, устойчивость к внешним воздействиям и легкость образования сплавов с другими металлами, особенно с железом, сделали хром одним из важнейших металлов в металлургии сплавов.
Хром применяется для получения различных сортов специальных сталей в изготовлении стволов огнестрельных орудий (от ружейных до пушечных), броневых плит, несгораемых шкафов и т. д. Стали, содержащие более 13 % хрома, почти не ржавеют и применяются для изготовления подводных частей кораблей, в частности, для постройки корпусов подводных лодок.
Хром широко применяется для хромирования изделий. Хромирование осуществляется электролитическим путем. Несмотря на то, что толщина наносимых пленок часто не превышает 0,005 мм, хромированные изделия становятся устойчивыми к внешним воздействиям (влаге, воздуху) и не ржавеют.
Из соединений хрома изготавливаются хромистые кирпичи - хромомагнезиты, применяемые в рабочем пространстве металлургических печей и других металлургических устройствах и сооружениях.
Соединения хрома встречаются в Родезии (Южная Африка), в Греции, в Новой Каледонии (остров в Тихом океане близ Австралии), на Урале. Хром относится к довольно распространенным элементам. На долю хрома приходится 0,006% от общего числа атомов земной коры.
Хром - постоянная составная часть растительных и животных организмов. В крови содержится от 0,012 до 0,0035 % хрома.
picanal.narod.ru
| ||||||||||||||||||||||
|
||||||||||||||||||||||
R2O |
RO |
R2O3 |
RO2 |
R2O5 |
RO3 |
R2O7 |
RO4 |
|||||||||||||||
Rh5 |
Rh4 |
h3R |
HR |
|||||||||||||||||||
Лантаноиды |
||||||||||||||||||||||
Актиноиды |
||||||||||||||||||||||
|
himik.pro