• Главная

Энциклопедия по машиностроению XXL. Оксид хрома из хрома


оксид хрома — с русского

Перевод: с русского

См. также в других словарях:

  • Оксид хрома(VI) — Общие …   Википедия

  • Оксид хрома(II) — Общие …   Википедия

  • Оксид хрома(IV) — Оксид хрома(IV) …   Википедия

  • Оксид хрома (VI) — Оксид хрома(VI) Общие Систематическое наименование Оксид хрома (VI) Химическая формула CrO3 Отн. молек. масса 100 а. е. м …   Википедия

  • оксид хрома — (Cr2O3) [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN chromic oxidechrome oxide …   Справочник технического переводчика

  • Оксид хрома — – Cr2O3 с небольшим количеством примесей водорастворимых солей – пигмент темно зеленого цвета. Устойчив к воздействию щелочей, кислот и повышенных температур. Получают путем нагревания смеси хромпика с каким либо восстановителем, например… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Оксид хрома(III) — Оксид хрома(III) …   Википедия

  • Хрома оксиды — Существуют следующие хлориды хрома: Название Формула Температура плавления Температура кипения Цвет Оксид хрома(II) CrO черный Оксид хрома(III) Cr2O3 2440 °C 3000 °C зеленый Оксид хрома(IV) CrO2 …   Википедия

  • ХРОМА СЕМЕЙСТВО — ПОДГРУППА VIB. СЕМЕЙСТВО ХРОМА ХРОМ, МОЛИБДЕН, ВОЛЬФРАМ Все три элемента VIB подгруппы хром Cr, молибден Mo, вольфрам W играют большую роль в промышленности, особенно в металлургии и электротехнике. Каждый из этих элементов занимает среднее… …   Энциклопедия Кольера

  • Оксид-сульфат титана — Общие Систематическое наименование Оксид сульфат титана Традиционные названия Основной сернокислый титан; оксосульфат титана; сульфат титанила Химическая формула TiOSO4 Физические свойства …   Википедия

  • Оксид калия — Общие …   Википедия

translate.academic.ru

Оксиды хрома - Энциклопедия по машиностроению XXL

В качестве абразивного материала применяют порошки из электрокорунда и оксиды железа при полировании стали, карбида кремния и оксиды железа при полировании чугуна, оксиды хрома и наждака при полировании алюминия и сплавов меди. Порошок смешивают со смазочным материалом, который состоит из смеси воска, сала, парафина и керосина. Полировальные круги изготовляют из войлока, фетра, кожи, капрона, спрессованной ткани и других материалов.  [c.373] В последнее время возникла тенденция покрывать сталь более экономичным комбинированным покрытием, состоящим из нижнего хромового слоя (0,008—0,01 мкм), находящегося на нем слоя оксида хрома и наружного органического покрытия. Таким образом в США защищают 16 % всей жести, выпускаемой для консервной тары [18]. Система обеспечивает следующие преимущества лучшую сохранность продуктов, стойкость к воздействию сульфидов, хорошую адгезию и отсутствие подтравливания наружного органического покрытия, стойкость наружной поверхности тары к нитевидной коррозии. Однако это покрытие трудно поддается пайке, что ограничивает его использование для консервных банок.  [c.241]

Хрома оксид Хром бромистый [53]  [c.258]

Оксид хрома (зеленый) - 0,5 - - -  [c.51]

Комплексные сульфаты щелочных металлов воздействуют не только на железо, а также и на существующие на поверхности оксиды хрома. По [70] такое воздействие протекает по следующей реакции  [c.71]

Образующийся при этой реакции оксид хрома СгОз легко улетучивается.  [c.71]

ВЛИЯНИЕ ФАЗОВОГО ВЗАИМОДЕЙСТВИЯ В СИСТЕМЕ ОКСИД ХРОМА-КРЕМНИЙСОДЕРЖАЩИЙ ЗОЛЬ НА МЕХАНИЧЕСКИЕ И ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ПОКРЫТИЙ  [c.134]

Спеки обозначены номером золя по таблице п условным знаком наполнителя С — оксид хрома, МА — алюмо.магниевая шпинель.  [c.138]

Приведенные данные свидетельствуют, что взаимодействие наполнителя оксида хрома с компонентами золя, препятствуя формированию стеклофазы в покрытии и изменяя фазовый состав наполнителя за счет образовавшегося хромита цинка, значительно ухудшает механические свойства покрытия.  [c.139]

Николаева Л. В., Колесникова М. Г. Влияние фазового взаимодействия в системе оксид хрома—кремнийсодержащий золь па механические и электрические свойства покрытий. — в кн. Получение и применение защитных покрытий. — Л. Наука, 1987, с.  [c.241]

Величина отношения равновесных концентраций соответствует величине несколько меньшей 10 . Приведенные оценки показывают, что окисление хрома кислородом до оксида хрома (III) происходит при температуре 1400 °С и давлении кислорода выше 10" Па. В присутствии паров воды н водорода при той же температуре окисление поверхности хрома будет идти при соотношении их парциальных давлений 1 200, а в газовой смеси Oj—СО при 1 1000 и больших значениях соотношений их парциальных давлений. При более низких величинах давлений кислорода и соотношений парциальных давлений HjO—На и СОа—СО будет идти восстановление поверхности хрома при 1400 °С.  [c.17]

ЦНИИТМАШ проведены исследования хромомарганцевой стали с содержанием 0,1% С, 14% Сг, 14% Мп и 3,0% 1, а также ряда сталей с переменным содержанием марганца (до 20%) и содержанием хрома на уровне 12—14%. Лучшая коррозионная стойкость выявлена у стали с содержанием марганца 8—12%. Когда марганца менее 8% или более 12%, пленка состоит из оксидов хрома и железа или марганца, которые в контакте с пентоксидом ванадия, образуя легкоплавкие эвтектики, резко снижают жаростойкие свойства сталей.  [c.247]

Прочностные и адгезионные свойства полиэтиленовых покрытий улучшаются с введением в качестве наполнителей оксидов алюминия и хрома, кварца, талька, диоксидов титана. Введение оксида хрома, кварца, талька, маршалита и других наполнителей способствует повышению стойкости полиэтиленовых покрытий к растрескиванию при эксплуатации в жидких средах.  [c.123]

Паста (200 г оксида хрома (П1)  [c.21]

Другие пигменты. Большую роль в антикоррозионных лакокрасочных материалах имеют такие пигменты, как оксид хрома и технический углерод.  [c.65]

Оксид хрома применяют для изготовления грунтовок, термостойких и химически стойких красок и эмалей.  [c.65]

Оксид хрома получают термическим или осадочно-прока-лочным способом. Первый способ основан на восстановлении бихромата калия серой, второй — на получении оксида гидроксида хрома с последующим прокаливанием.  [c.65]

Никель — дисульфид молибдена 137, 138 Никель — карборунд 120, 241 Никель — корунд 239 Никель — металлы 140, 145 Никель—муллит 232 Никель — нитрид бора 124, 139 Никель — оксид урана 146 Никель —оксид хрома 85, 125 Никель — органические полимеры 235 Никель — фосфор 238 сл.  [c.267]

Общее количество отложений, мг/см Оксиды железа Оксиды хрома Оксиды никеля  [c.150]

В качестве абразива для притирочной смеси используют поронкж злектроко-руида, карбидов кремния и бора, оксиды хрома и железа н др. Притирочные пасты состоят из абразивных по )ошков и химически активных веществ, например олеиновой н стеариновой кислот, играющих одновременно роль связующего материала.  [c.375]

Слой оксида хрома улучшает адгезию органического покрытия причем оптимальная адгезия наблюдается при толщине покрытия полученного при нанесении 20 мг гидратированного оксида на 1 м поверхности [18]. Полимерная пленка, в свою очередь, за крываетпорыв металлическом покрытий, увеличивает сопротив  [c.241]

Полуторный оксид хрома СГ2О3, присутствовавший в шлаках при сварке хромоникелевых сталей, изоморфен корунду и образует с ним твердые растворы, окрашивая их в розовый цвет.  [c.353]

В условиях котла наиболее важными катализаторами являются Ре20з, СГ2О3 и V2O5. На рис. 1.9 представлена конверсия SO2 в SO3 в зависимости от температуры при использовании разных катализаторов. Каталитическое воздействие данного материала в зависимости от температуры имеет максимум. Наибольший каталитический эффект при воздействии оксида ванадия получается при температуре около 500 °С. Несколько меньший каталитический эффект имеют оксиды хрома i 2О3 и железа РеаОз соответственно с максимумами примерно при 550 и 600 °С.  [c.20]

Сильному воздействию хлоридов подвергаются имеющиеся в аустеиитиых сталях локализированные на границах зерен карбиды хрома Сг2зСб. Аналогично реагирует с хлоридами наиболее важный компонент оксидной пленки — СггОз. Под влиянием хлоридов защитные свойства оксидной пленки, содержащей оксиды хрома, резко падают, что следует из уравнения  [c.75]

Результаты РФА спеков СГ2О3—золь (1, 2, 3) приведены на рис. 1. На штрих-диаграмме спека 1С имеются только линии оксида хрома, свидетельствующие о том, что выделенный из золя твердый остаток рентгеноаморфен. В опеке 2С после обжига при 800 С наряду с линиями оксида хрома имеются линии хромата стронция. После обжига при 1000 °С в снеке происходит перераспределение кристаллических  [c.138]

С — 7п28104. Аналогичного состава кристаллические фазы возникали в твердых остатках, полученных из золей. В отличие от композиций с оксидом хрома в спеках со шпинелью взаимодействия с компонентами золей не обнаружено.  [c.139]

Электрическое сопротивление снеков измерялось мостом пере" менного тока в интервале температур 20—600 °G (рис. 3). Видно, что электрическое сопротивление спеков 1G и 3G практически одинаково во всем исследуемом температурном интервале. GneK 3G при температуре 250-°G имеет ру = 2.4-10 Ом-см, что соответствует pv оксида хрома. Принимая во внимание, что пробивное напряжение покрытий,, полученных из суспензий 1G и 3G, одинаково и составляет 22 кВ/мм, можно предположить, что количество образовавшихся в спеках хромата стронция и хромита цинка мало и не оказывает существенного влияния на электрические Свойства полученных композиций.  [c.139]

К числу наиболее эффективных материалов для тепло,эащитпых покрытий относятся керметы на основе оксида циркония [1]. Исследовались покрытия и,э порошковых смесей 7гО,—Сг, напы.тенных па медную подложку. Напыление проводилось на промежуточный слои па хромоникелевого сплава ЭП-616, технология нанесения которого описана в работе [2]. Получение покрытия осуществлялось на автоматизированном детонационном комплексе КПИ—8 [3]. В качестве компонентов детонирующей смеси использовались ацетилен II кислород. Анализ зависимости плотности покрытий от состава детонирующей смеси определил оптимальное соотношение ацетилена и кислорода, равное 1. Увеличение содержания кислорода свыше указанного приводит к образованию оксидов хрома, уменьшение — к снижению температуры продуктов детонации до значений, не обеспечивающих достаточно полного расплавления металлического связующего.  [c.161]

Показано, что взаимодействие оксида хрома со стронций- и цииксодержащими компонентами золей после нагревания при 800 и 1000 °С в течение 30 мин приводит к образованию в спеках хромата стронция и хромита цинка, значительно снижающих механические свойства получаемых покрытий.  [c.241]

Оксид хрома. Пигментный оксид хрома по химическому составу представляет собой почти чистый оксид хрома (99—99,5%). Цвет — оливково-зеленый с разными оттенками от желтоватого до синеватого. Пигмент обладает высокой укры-вистостью, а также свето-, термо-, атмосферостойкостью и стойкостью к действию агрессивных газов. Оксид хрома нерастворим в воде, трудно растворим в кислотах и щелочах, легко окисляется расплавленными окислителями (нитритами, перхлоратами), воздухом в присутствии щелочей, горячими растворами окислителей.  [c.65]

Покрытия из металлов п сплавов используют в качестве антикоррозионных (хром, никель, нихром), жаростойких (ниобий, мо либден), жароэрозионностойких (вольфрам). Хромоникелевые само-флюсующиеся сплавы обладают износостойкостью, эрозионной и коррозионной стойкостью, стойкостью к окислению при высокой температуре. Оксиды (оксид алминия, оксид хрома, диоксиды циркония или титана) применяют как теплозащитные покрытия, обладающие высокой жаро- и коррозионной стойкостью, твердостью. Бориды различных металлов имеют высокую твердость и хорошую жаростойкость, силициды — высокую термо- и жаростойкость. Карбиды металлов в большинстве случаев характеризуются высокой твердостью, износо- и жаростойкостью нитриды титана, циркония, гафния — высокой твердостью, износо- и термостойкостью, устойчивостью к коррозии.  [c.139]

Линейный М. э. обнаружен в 1960 (Д. Н. Астров) в кристалле оксида хрома Сг Оз, элементарная ячейка к-рого показана на рис. 1, а. Для Сг ,Оз т — а Е , Р2= ,//г, От —а1 Р1 = 1 Ях, где индекс 1 обозначает величины в базисной плоскости кристалла. При переходе к другому домену (рис. 1, б) изменяются знаки 3 и 1, однако указать, какому именно домену какой знак соответствует, невозможно.  [c.22]

Общее количество отложений, мг/см Оксиды железа Оиснды меди Оксиды хрома  [c.151]

В коррозионностойкие стали вводят титан в количестве Ti > 5С, как правило, не выше 1,0... 1.5%, который является сильным карбидообразующим элементом. Титан образует с углеродом карбиды П2С и Ti , уменьшает возможность образования карбидов хрома СгузС ., Сг-Сз, СГ3С2 (что происходит при выплавке и термообработке стали), тем самым повышая возможность образования пассивной пленки оксида хрома. На таком принципе основано создание ряда коррозионностойких сталей, например, аустенитных. чромоникелевых коррозионностойких сталей типа  [c.83]

mash-xxl.info

Способ изготовления огнеупорных изделий из оксида хрома

 

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления хромоксидных огнеупоров, применяемых для футеровки стекловаренных печей. Технический результат изобретения: повышение качества при одновременном снижении дисперсий эксплуатационных характеристик. На стадии подготовки шихты в мелкодисперсную фракцию хромоксидного огнеупора вводят оксид магния и кремнеземсодержащую компоненту в виде комплексной добавки, содержащейся в бесщелочном стекле марки Е, смешивают при совместном измельчении, изготовливают формовочную смесь путем введения фосфатного связующего и мелкодисперсной фракции в зернистую фракцию хромоксидного огнеупора, смесь гранулируют путем протирки через сита, засыпают в пресс-форму, подвергают воздействию виброколебаний, прилагают давление по величине, не превышающей предела прочности зерна хромсодержащего огнеупора, изделия сушат и обжигают. 1 табл.

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления хромоксидных огнеупоров, применяемых для футеровки стекловаренных печей.

Оксид хрома является огнеупорным материалом с высокой химической устойчивостью к расплавам бесщелочных стекол. Широкое применение огнеупоров из оксида хрома сдерживается сложностями, возникающими при разработке технологии получения хромоксидных крупногабаритных изделий с высокой плотностью. По литературным данным пористость образцов из оксида хрома, обожженых на воздухе при 1750oC, составляет 38,6% (Леонов А.И. - "Известия АН СССР", "Неорганические материалы" 1966 г., т. 2, N 12, с. 2168-2174). Распространенным технологическим приемом, используемым для увеличения спекания оксидов, является введение в шихту малых добавок и использование различных газовых сред. При этом количество вводимых добавок колеблется в пределах от долей процентов до нескольких процентов. С технологической точки зрения необходимо экспериментальное подтверждение оценки качества вводимой добавки и параметров технологических операций на формирование физико-механических свойств. Известна шихта для изготовления огнеупорных изделий, включающая оксид хрома, диоксид титана, оксид магния, отличающаяся тем, что, с целью повышения прочности и стеклоустойчивости, снижения смачиваемости расплавом, она дополнительно содержит глину при следующем соотношении указанных компонентов, мас.%: 89-97 оксида хрома, 1 - 5 диоксида титана, 0,1 - 1 оксида магния, 1 - 5 глины (авт. свид. N 442175, СССР, Бюллетень N 33, 1974 г.). Известное решение позволяет получать хромоксидные образцы с пористостью порядка 15-18%. Недостатком известной шихты является использование высокодисперсных компонентов, которые в результате спекания приводят к значительным (10-12%) усадочным деформациям и увеличению отходов дефицитных материалов при механической обработке. Наиболее близким к заявляемому объекту по решаемой технической задаче - прототипом - является способ изготовления хромоксидных изделий из зернистых масс. Способ состоит из двух стадий. На первой стадии получали брикеты путем смешивания оксида хрома марки ОХП с комбинированной добавкой, содержащей 3,5% TiO2, 4% часов-ярской глины и 0,5% MgO, смесь увлажняли в смесителе 1,5% сульфатно-спиртовой бражки, прессовали брикеты при Pуд = 500 - 600 кгс/см2, высушивали и обжигали в окислительной среде при 1650oC. Обожженные брикеты дробили, измельчали и рассеивали на фракции (мм) 2 - 1; 1 - 0,5; 0,5 - 0,09; oC (Э.В.Дегтярева, И.И.Кабакова, Я.З.Шапиро, А. И. Портнова, Н.М.Квасман. Изд-во "Металлургия", "Огнеупоры", 1977, N 12, с. 31-35). Известный способ позволяет уменьшить усадочные деформации, так как линейная усадка не превышает 5,3%. Недостатком способа является неопределенность в содержании стеклообразующей добавки, так как в часов-ярских глинах в зависимости от марки разброс по содержанию стеклообразующих компонентов достаточно высок (SiO2 от 49,4 до 78,3%), что может в значительной степени повлиять на кинетику спекания и формирование свойств. Кроме того, достичь равномерного распределения глинистой добавки достаточно сложно, так как она в зависимости от размера частиц и величины пор может скапливаться в локальных участках, что приводит к неравномерности структурных характеристик и химического состава, чем и определена повышенная (8,2-11,9%) открытая пористость, усадка и значительная дисперсия эксплуатационных характеристик от средних значений. Задачей авторов является разработка способа получения хромоксидных огнеупоров, обеспечивающего достижение цели - повышение качества при одновременном снижении дисперсии эксплуатационных характеристик. Поставленная цель достигается в отличие от известного способа тем, что на стадии подготовки шихты оксид магния и кремнеземсодержащую компоненту вводят в виде комплексной добавки, содержащейся в бесщелочном стекле марки E, состава, мас.%: SiO2 54,0, Al2O3 14,5, MgO 4,0-4,5, CaO 16,5-18,0, B2O3 8,0-10,0, F 0,2-1,0, смешивают при совместном измельчении до получения мелкодисперсной фракции, изготавливают формовочную смесь путем введения фосфатной связки и мелкодисперсной фракции в зернистую фракцию хромсодержащего огнеупора, смесь гранулируют путем протирки через сита, засыпают в пресс-форму, подвергают воздействию виброколебаний, прилагают давление по величине, не превышающей предела прочности зернистой фракции хромсодержащего огнеупора, изделия сушат и обжигают. Техническая сущность заявляемого способа заключается в следующем: - введение оксида магния и кремнеземсодержащей компоненты в виде бесщелочного стекла марки E с фиксированными значениями оксидов кремния, алюминия, магния, кальция, бора и фтора позволяет объективно контролировать количественный состав введенных примесей и их влияния на процессы уплотнения и формирование физико-механических свойств в отсутствии щелочных оксидов; - смешивание оксида хрома и комплексной добавки при совместном измельчении позволяет получить шихту с равномерным распределением компонентов в единице объема с высокой поверхностной энергией дисперсных частиц, стимулирующей в процессе уплотнения поверхностную и объемную диффузию, а также образование твердых растворов с оксидом хрома, устойчивых к воздействию агрессивных сред; - получение формовочной смеси из расчетного количества зернистой фракции хромоксидного огнеупора и мелкодисперсной комплексной компоненты позволяет получить заданный состав хромоксидного огнеупора и преследует цель снижения объемных усадочных эффектов при уплотнении мелкодисперсной компоненты в приграничных областях крупнозернистых частиц и, как показывает практика, возникает возможность снизить деформацию изделий и свести к минимуму механическую обработку, а для крупногабаритной номенклатуры изделий исключить ее, что повышает выход готового продукта и снижает себестоимость единицы изделия; - ведение фосфатной связки определено его большой адгезионной способностью к хромоксидному материалу и вследствие большой кривизны пор в крупнозернистом материале и капиллярного эффекта каналов сообщающихся пор энергетически выгодна в первоначальный момент адсорбция связки в открытых объемах крупнозернистых частиц и последующее наволакивание на них дисперсной составляющей, что в процессе спекания приводит к закрытию открытых пор; - имеющиеся в бесщелочном стекле E оксиды алюминия и кальция образуют с фосфорсодержащей связкой ортофосфат AlPO4 и пирофосфат Ca2P2O7, структурные особенности фаз которых характерны для химических соединений с повышенной реакционной способностью при спекании; - протирание формовочной смеси через сита предусматривает получение различных по фракциям сфероидообразных частиц, способствующих более плотной упаковке материала при заполнении пресс-форм; - наложение виброколебаний позволяет получить максимально возможный для данной конгломерированной системы объемный вес засыпки и, в совокупности с приложенным давлением прессования, достичь повышенной плотности сырца, что позволяет изготавливать при спекании плотные и недеформированные изделия, вследствие малых объемных усадок; - формирование сырца при удельных давлениях ниже предела прочности хромоксидного огнеупора исключает разрушение крупнозернистых частиц и тем самым позволяет снизить усадку, сохранить заданную поликристаллическую структуру, регламентирующую физико-механические, теплофизические свойства и устойчивость против коррозии в бесщелочном стекле. Примеры осуществления. Пример 1. 1. Исходное сырье и материалы. 1.1. Окись хрома металлургическая марки ОХМ-1, ГОСТ 2912-79. 1.2. Лом изделий из хромоксидного материала после службы в печах. 1.3. Диоксид титана, ГОСТ 9808-84. 1.4. Бесщелочное стекло марки E (отходы производства). 1.5. Ортофосфорная кислота термическая ТУ 113-08-5015182-105-95. 2. Подготовка сырья. 2.1. Лом хромоксидных огнеупоров тщательно очищают от посторонних примесей и крупных включений и дробят на куски 150-200 мм. Измельчение лома проводили на дробилке марки КИД-300. Измельченный материал пропускали через магнитный сепаратор ЭВС-В-3650 для отделения железа и рассеивали на виброгрохоте, отбирая фракции 0,6-2 мм. Бой стекла измельчали и отбирали фракцию 0,6 мм. 2.2. Для изготовления мелкодисперсной компоненты отбирали фракции помолотого лома изделий и стекла, прошедшего через сито 0,6 мм. Соотношение компонентов для изготовления мелкодисперсной шихты составляло, мас.%: Оксид хрома (ОХМ) - 72 Крупка хромоксидного лома - 16 Диоксид титана - 11,8 Крупка стекла E - 0,2 Компоненты загружали в вибромельницу марки СВМ 45/100 и производили помол в течении 40 мин. Дисперсность частиц шихты составляла 1 - 3 мкм. Полученную дисперсную шихту затаривали в герметичный контейнер и пермещали на операцию приготовления формовочной смеси. 3. Приготовление формовочной смеси. 3.1. Формовочную смесь готовили из расчетного содержания компонентов, мас.%: Измельченный лом хромоксидных огнеупоров, фракции - 2+0,6 мм - 55 мелкодисперсная смесь ортофосфорная кислота, Y = 1,45 г/см3 (сверх 100%) - 5 3.2. Смесь готовили в мешалке с Z-образными лопастями. Первоначально загружали измельченный лом хромоксидного огнеупора фракций 2-0,6 мм и половину от расчетного количества ортофосфорной кислоты при постоянном перемешивании в течение 5 мин. Мелкодисперсную смесь вводили порциями (10-15% от расчетного) при постоянном перемешивании и доувлажняли оставшимся количеством кислоты. Общее время перемешивания составляло 20-25 мин. Влажность формовочной смеси составляла 4мас.%. 3.3. Подготовленную массу выгружали на сита с размером ячейки 3-5 мм и тщательно протирали. 4. Формование изделий. 4.1. Тщательно очищенную и смазанную машинным маслом пресс-форму устанавливали на виброплощадке. Формовочную массу взвешивали на платформенных весах из расчета получения бруса размером 630х320х83-85 мм. После заполнения пресс-формы налагали виброколебания в течение 5-10 сек, затем верхним пуансоном накладывали давление 700-800 кг/см2 и при постоянном вибрировании процесс вели до посадки пуансона на заданный уровень. Весь процесс формования составлял 40-50 сек. После формования изделия замеряли, взвешивали для определения объемного веса 5. Сушка изделий. 5.1. Сушку изделий проводили в электрической двухкамерной сушилке при температуре 70-100oC в течение времени, необходимом для достижения влажности 0,2-0,3%. 6. Обжиг изделий. 6.1. Обжиг изделий проводили в газопламенной печи. Изделия загружали в муфель для защиты от факела при температуре 158020oC. 6.2. Спеченные изделия контролировали по весу и размерам для определения плотности. Из бруса вырезали образцы из разных точек объема (3-4 образца) для определения состава, физико-механических свойств и устойчивости в расплаве стекла E по стандартным методикам. Результаты определений представлены в таблице. Пример 2. При реализации примера 2 были продублированы вся последовательность и параметры операций технологического процесса по примеру 1. Исключение составляет состав шихты для получения огнеупора, содержащего 96% Cr2O3 и 2% TiO2. Содержание компонентов в шихте составляло, мас.%: оксид хрома (ОХМ-1) - 80 крупка хромоксидного лома - 15 порошок диоксида титана - 4 крупка стекла E - 0,5 Данные таблицы показывают, что предлагаемый способ получения огнеупоров из оксида хрома позволяет изготавливать изделия с повышенными технологическими и эксплуатационными характеристиками по сравнению со значениями, полученными на изделиях, изготовленных известным способом, что подтверждает высокое качество огнеупоров, которое определяет конкурентноспособность импортным аналогам. Практическое осуществление заявляемого способа подтверждает, что предлагаемое техническое решение позволяет эффективно реализовать бой изделий, прошедших эксплуатацию, или брак изделий после отжига и приводит к рациональному использованию дорогостоящего сырья и снижает финансовые затраты на изготовление единицы продукции. Заявляемый способ осуществляется на стандартном промышленном оборудовании с обеспечением мер безопасности для обслуживающего персонала и окружающей среды, объективно контролируется при изготовлении промышленных партий изделий заданного состава. Предлагаемый способ был реализован при изготовлении 50 т огнеупоров для футеровки стекловаренной печи на Норильском горно-металлургическом комбинате.

Формула изобретения

Способ изготовления огнеупорных изделий из оксида хрома, включающий подготовку шихты, содержащей оксид хрома, оксид титана, оксид магния и кремнеземсодержащую компоненту, дробление, измельчение, рассев на зернистую и мелкодисперсную фракции, получение формовочной смеси, прессование, обжиг в газовой среде при 1650°С, отличающийся тем, что на стадии подготовки шихты в мелкодисперсную фракцию вводят оксид магния и кремнеземсодержащую компоненту в виде комплексной добавки, содержащейся в бесщелочном стекле марки Е, смешивают их при совместном измельчении, изготавливают формовочную смесь путем введения фосфатной связки и мелкодисперсной фракции в зернистую фракцию хромсодержащего огнеупора, смесь гранулируют путем протирки через сита, засыпают в пресс-форму, подвергают воздействию виброколебаний, прилагают давление по величине, не превышающей предела прочности зернистой фракции хромсодержащего огнеупора, перед обжигом изделия сушат.

РИСУНКИ

Рисунок 1

www.findpatent.ru