Медь никель хром. Влияние никеля, хрома, марганца, титана, ванадия и меди на свойства чугуна
  • Главная

Энциклопедия по машиностроению XXL. Медь никель хром


Влияние никеля, хрома, марганца, титана, ванадия и меди на свойства чугуна

Справочная информация

Легированные чугуны содержат значительное количество специальных элементов:- никель, - хром, - марганец, - титан, - ванадий, - медь и другие лигирующие элементы..., Лигирующие элементы способствуют измельчению структуры и повышению физико-механических свойств отливок. Легированные чугуны получаются присадкой специальных элементов в обыкновенный жидкий чугун или применением в качестве шихтовых материалов природно-легированных чугунов. Природно-легированные чугуны выплавляются в доменных печах. Хром - увеличивает твердость и прочность чугуна и особенно его сопротивление износу, но вызывая отбел, затрудняет обрабатываемость отливок. Одновременно хром способствует выделению мелкораздробленного графита и образованию зернистого перлита, в результате чего сильно повышается прочностьметаллической основы чугуна.Никель - способствует распаду цементита, препятствует отбелу и улучшает обрабатываемость чугуна. Никель, кроме того, измельчает перлит и графит и увеличивает прочность и износостойкость отливок. Добавка природно-легированного никелевого чугуна до 10-15% в обычную ваграночную шихту делает графит мелким, а перлиту придает очень тонкое строение. Механические свойства и износостойкость чугуна при этом резко возрастают. Никель способствует также выравниванию твердости по сечению отливки. При наличии никеля в чугуне содержание кремния можно несколько уменьшить, так как оба они способствуют графитизации. Для получения мелкого графита и одинаковой твердости в разных сечениях отливки часто применяют присадку никеля и феррохрома. Получающийся в результате этого хромоникелевый чугун обладает хорошей прокаливаемостью и имеет равномерное падение твердости от поверхности к сердцевине.Ванадий - способствует получению мелкозернистой структуры в чугуне, одновременно уменьшая в нем количество графита и упрочняя его металлическую основу. Ванадий в количестве до 0,2% увеличивает общую прочность чугуна без заметного снижения его вязкости.Титан - благоприятно действует на структуру и свойства отливок, способствуя получению мелких включений графита и увеличению прочности металлической основы чугуна. Являясь хорошим раскислителем, титан обеспечивает получение чугуна, свободного от газовых раковин и вредных примесей.Медь - оказывает действие на свойства чугуна подобно никелю и часто применяется в качестве его заменителя. Медистые чугуны обладают достаточной твердостью, высокой вязкостью и хорошей обрабатываемостью. Особенно благоприятное влияние оказывает медь на чугун, содержащий до 2% кремния.Применение легированного чугуна дало возможность отечественному машиностроению освоить жаростойкие, жаропрочные, износостойкие, кислотостойкие и конструкционные классы чугунных отливок. В настоящее время автомобильная, тракторная, дизельная, станкостроительная и другие отрасли промышленности резко увеличили срок службы литых деталей благодаря применению легированного чугуна, физико-механические свойства которого значительно превосходят свойства обыкновенного серого чугуна.

 

В Компании ГП Стальмаш Вы можете купить отливки чугунные из следующих видов чугунов:    Серый чугун для разнообразных фасонных отливок СЧ10-СЧ30 по ГОСТ 1412-85;    Специальные чугуны ЧХ1-ЧХ16 по ГОСТ 1169-82, отличающиеся повышенной жаропрочностью, износостойкостью и коррозионной устойчивостью;    Жаростойкий чугун ЖЧХ по ГОСТ 1169-82;    Антифрикционный (подшипниковый) чугун АСЧ по ГОСТ 1585-85 и другие марки.Чтобы купить чугунные отливки Вам необходимо позвонить по телефонам отдела сбыта ГП Стальмаш, ООО(343) 372-3655, (343) 268-8589, (343) 268-6735, (343) 268-6713илинаправить запрос с сайта, через форму - "ОБРАТНАЯ СВЯЗЬ"

Металлопрокат от ГП Стальмаш, ООО [открыть для просмотра]

yaruse.ru

никеля с молибденом и железом никеля с молибденом хромом никеля с хромом

    Для того чтобы выяснить электрохимическое поведение компонентов, входящих в состав нержавеющих сталей, в смесях хлоридов и сульфатов, были сняты анодные поляризационные кривые на железе, никеле, молибдене, хроме, а также, для сравнения, на чисто хромистой стали Х28 (рис. 150). [c.306]

    Не мешают определению титана магний, алюминий, цинк, кадмий, марганец, медь, цирконий, церий, р.з.э. кобальт, ванадий (17), железо (П), молибден (У). Никель, хром (Ш) мешают только собственной окраской. Железо (Ш), ванадий (У), молибден (У1)- образуют с реактивом окрашенные соединения, их мешающее действие устра-няется восстановлением аскорбиновой кислотой. [c.23]

    Железо (кобальт) в виде порошка, опилок Железо — медь, железо — алюминий Железо — олово, железо — молибден Железо + хлориды (магния, хрома, аммония, никеля) [c.6]

    Окислы (марганца, алюминия, железа, цинка, олова, кобальта, никеля, хрома) Молибден — цинк [c.33]

    Активированное железо, осажденное на инфузорной земле Смесь 85% железа и 15% цинка Железо (никель, медь, кобальт, марганец, хром, молибден, олово, алюминий) со щелочами или щелочными землями и кремнием или бором Окись железа, содержащая титан (получаемая в производстве боксита) [c.33]

    Платина, золото, серебро, медь, железо, никель, кобальт, хром, тантал, ванадий, вольфрам, молибден и марганец и их соответствующие окислы окись меди с вольфрамовым ангидридом на активированном угле [c.116]

    Платина, золото, серебро, медь, железо, никель, кобальт, хром, тантал, ванадий, вольфрам, молибден и марганец или их окислы плюс вольфрамовый ангидрид [c.122]

    Железо, никель, медь, кобальт, марганец, хром, молибден, олово, алюминий с добавками щелочей или щелочных земель, кремния и бора [c.319]

    Кобальт обычной чистоты представляет собой недостаточно пластичный металл и поэтому металлический кобальт мало применяют в технике. Однако сплавы на основе кобальта или содержащие заметное его количество, играют важную роль в современной технике. Сплавы на основе кобальта, часто называемые стеллитами, легированы значительным количеством хрома, а также вольфрамом железом, никелем, молибденом и углеродом. Они являются высоко жаропрочными и жаростойкими конструкционными материалами. Высокая прочность и твердость обусловлены тем, что они содержат значительное количество карбидов хрома и вольфрама. Такие сплавы применяют для наварки фасок выхлопных клапанов авиадвигателей, лопаток газовых турбин, матриц, инструментов и некоторых других деталей, работающих одновременно при высоких температурах и механических и истирающих нагрузках. [c.232]

    Водород Гелий Неон. . Аргон. Криптон Ксенон. Радон Хлор. . Молибден Вольфрам Ниобий. Тантал. Титан Железо. Никель, Марганец Хром. . Стронций Барий Литий. Натрий. Калий. Рубидий Цезий.  [c.97]

    Самое большое значение среди всех сплавов имеют стали различных составов. Простые конструкционные стали состоят из железа относительно высокой чистоты с небольшими (0,07—0,5%) добавками углерода, а легированные стали получают, добавляя к железу кремний, медь, марганец, никель, хром, вольфрам, ванадий и молибден. [c.117]

    А. Т. Ваграмян и сотрудники [14, 15] считают, что одной из основных трудностей восстановления ионов металлов на твердой поверхности является склонность металлов к пассивированию. По степени трудности восстановления ионов они делят все металлы на три группы. К первой группе относятся металлы, выделяющиеся на катоде с низким перенапряжением (олово, кадмий, цинк, медь, серебро и др.). Для металлов этой группы характерна малая скорость пассивации и электроосаждение на активных участках катода. Металлы, выделяемые с большим перенапряжением, объединяются во вторую группу (железо, никель, кобальт, хром, марганец и др.). Эти металлы отличаются большой склонностью к пассивированию. Считается, что возникновение на поверхности электрода пленки из чужеродных частиц затрудняет дальнейший разряд ионов. К третьей группе относятся металлы, осадить которые из водных растворов не удается (молибден, вольфрам, уран, ниобий, титан, тантал). Большая реакционная способность этих металлов приводит к образованию окисных соединений, на поверхности которых, по мнению А. Т. Баграмяна и его [c.55]

    Интересный способ определения содержания кобальта в солях никеля состоит в предварительном окислении o + до Со " перборатом натрия в аммиачном буферном растворе [16]. После разрушения избытка окислителя сульфатом гидроксиламина раствор полярографируют в пределах от —0,2 до —0,8 в. Потенциал полуволны Со + равен —0,4 в. Определению не мешают мышьяк, кадмий, сурьма, олово, цинк и, если находятся в умеренных количествах, висмут, медь, железо, марганец, молибден. Свинец н хром, присутствующие в больших количествах, удаляют путем осаждения хлоридом бария или сульфатом натрия. При содержании кобальта около 0,1% ошибка определения не превышает 2,6%. В 0,01 М растворе триэтаноламина и 0,1 М растворе КОН было определено содержание свинца и железа в пергидроле и меди, свинца и железа в плавиковой кислоте и фториде аммония в количестве 1.10 —5.10 % [17]. В растворе фторидов проводилось также определение олова, основанное на получении его комплексных ионов [18]. Разработан метод определения растворимой окиси кремния в уранилнитрате, основанный на полярографическом восстановлении кремнемолибденового комплекса [19]. Можно определить 2 мкг ЗЮг с точностью до 10%. Мешают ванадий и железо. [c.83]

    Коррозионная стойкость стали может быть повышена путем введения хрома, никеля, молибдена, титана, марганца и некоторых других элементов в различных сочетаниях. Чаще всего встречаются кислотоупорные стали следующих систем железо — хром железо — хром — никель железо — никель — молибден железо — хром — никель — титан железо — хром — никель — марганец и т. д. Эти сплавы принадлежат к нержавеющим сталям. Большинство из них отличается высокой коррозионной устойчивостью в различных агрессивных средах, что объясняется их способностью переходить в пассивное состояние благодаря образованию на поверхности защитных пленок. [c.13]

    Волокнистый углерод может получаться как при разложении смеси окиси углерода с водородом на поверхности железа при температуре 1000° С, так и при крекинге метана, разбавленного азотом, в тех же условиях. Исследования показали, что катализатором реакции является или железо, или карбид железа. В качестве катализаторов были исследованы медь, никель, серебро, железо, хром, молибден и электролитические отложения палладия и родия. Было установлено, что образованию волокнистого углерода способствуют только железо, никель и кобальт. При этом в зависимости от примененного катализатора волокна имеют разную структуру. [c.69]

    В связи с тем, что элементы семейства железа — ванадий, хром, марганец, железо, никель, а также медь, свинец, молибден — являются основными компонентами нефтяных зол и занимают доминирующее положение среди других микроэлементов в золах изученных нефтей, было осуществлено их количественное определение (спектральным анализом). Средние значения содержания этих элементов по горизонтам сведены в табл. 44, из которой видно, что хотя зависимости между зольностью нефти и содержанием ванадия, хрома, марганца, железа, никеля, меди, свинца и молибдена не наблюдается, прямая связь между содержанием последних и глубиной залегания нефти в определенной степени выявляется. Важен и тот факт, что в золе исследованных палеогеновых нефтей Таджикской депрессии содержание приведенных выше восьми микроэлементов, особенно таких, как ванадий, никель, железо, молибден, выше, чем в золе третичных нефтей других регионов СССР, а в некоторых случаях даже выше, чем в золе палеозойских нефтей Волго-Уральской области. Сравнительные данные обобщены в табл. 45. [c.124]

    Было установлено, что исследованные нефти по количественному содержанию в них микроэлементов значительно превосходят все аналогичные третичные нефти Советского Союза. Особенно это отчетливо видно на примере таких характерных элементов, как ванадий, хром, молибден, железо, никель, медь, свинец. Весьма примечательно и то, что в них отношение ванадий никель больше единицы, в то время как во всех нефтях этого возраста эта величина меньше единицы. [c.151]

    Изучением скорости разложения окиси углерода при атмосферном и пониженных давлениях занимались многие исследователи в связи с важным значением этой реакции в доменном процессе [3, 4]. В литературе ее принято называть реакцией Бэлла. Было установлено, что распад СО с заметной скоростью возможен в присутствии катализаторов. Катализаторами для этой реакции являются железо, никель, кобальт, хром. Цинк, медь, кремний, молибден совершенно инертны. Оптимальная температура распада СО зависит от типа катализатора. Большинство исследователей указывает, что наибольшая скорость распада на Ге наблюдается при 450—600°. Шамот, содержащий в своем составе железо, его окислы и соли, также катализирует реакцию Бэлла, причем максимальная скорость на нем достигается при 700°. [c.81]

    ВЛИЯНИЕ ЖЕЛЕЗА, НИКЕЛЯ И ХРОМА НА КОРРОЗИОННУЮ СТОЙКОСТЬ И МЕХАНИЧЕСКИЕ СВОЙСТВА СПЛАВОВ СИСТЕМЫ ЦИРКОНИЙ — МЕДЬ — МОЛИБДЕН [c.144]

    ВЛИЯНИЕ ЖЕЛЕЗА, НИКЕЛЯ И ХРОМА НА КОРРОЗИОННЫЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА СПЛАВОВ ЦИРКОНИЙ —МОЛИБДЕН —НИОБИЙ И ЦИРКОНИЙ-МЕДЬ —ОЛОВО [c.215]

    В процессах гидроочистки различных нефтепродуктов могут быть использованы любые сероустойчивые гидрирующие катализаторы, но лучшие результаты дают металлы, окислы и сульфиды элементов VI или VIII групп периодической системы элементов (никель, кобальт, железо, молибден, вольфрам, хром) и различные их сочетания друг с другом [40, 83—99]. [c.74]

    Этим требованиям полнее всего соответствуют металлы, окислы и сульфиды элементов VI и VI11 групп Периодической системы элементов (никель, кобальт, железо, молибден, вольфрам, хром). Состав катализаторов оказывает существенное влияние на избирательность реакций, поэтому соответствующим подбором компонентов катализаторов и их соотнощений удается осуществлять управление процессом гидроочистки моторных топлив в широких пределах. [c.201]

    Для кадмия, олова, свинца, осаждающихся почти без перенапряжения (поляризации), приходится изыскивать специальные условия. В противном случае получаются грубокристаллические некомпактные осадки, совершенно не обладающие защитными свойствами. Металлы, разряд и выделение которых сопровождается высоким перенапряжением, — железо, никель, кобальт, хром — осаждаются в виде мелкокристаллических компактных осадков. Такие металлы, как молибден, вольфрам, титан, тантал и ниобий, вообще не удалось выделить из водных растворов в чистом виде. Они выделяются только в виде оксидов, гидроксидов или очень тонких (до 0,3 мкм) металлических пленок. [c.364]

    Каталитическая активность полимерных комплексов в значительной степени зависит от окислительно-восстановительного потенциала металла (медь, железо, молибден, кобальт, никель, хром, марганец в различных степенях окисления) она возрастает с падением стабильности полихелата и с уменьшением упорядоченности его структуры (отсутствие кристалличности, искаженная геометрическая конфигурация, наличие не полностью насыщенных координационных центров). У порфириноподобных полимеров, упо. янутых выше, большое значение имеет наличие системы сопряжения и коллективных электронных свойств (часто активность растет с падением энергии-активации электропроводности). Иногда смешанные комплексы, содержащие металлы нескольких типов, действуют сильнее, чем комплексы с металлами одного типа. При использовании некоторых макромолекулярных хелатов-для инициирования полимеризации стирола, метилметакрилата и т. д основная реакция сопровождается прививкой к макрохе-лату. [c.328]

    В качестве гидрирующего компонента катализатора были испытаны железо, никель, платина, хром, молибден и некоторые другие. Эти металлы в количестве 5— 6% наносились на микро-сферический алюмосиликатный носитель (в случае платины не более 1%). Полученный катализатор формовался в таблетки и термообрабатывался. Некоторые катализаторы, например никелевый, перед опытами подвергались частичному осернению сероводородом, а другие (платиновый и молибденовый) испытывались в восстановленной и окисной формах. [c.70]

    ПЕРМАЛЛОЙ [англ. permalloy, от )erm(eability) — проницаемость и al-оу — сплав] — магнитно-мягкий прецизионный сплав на никелевой основе с высокой магнитной проницаемостью. В пром. масштабах применяется с 20-х гг. 20 в. Представляет собой сплав никеля и железа, легированный кремнием, марганце.м, хромом и молибденом с примесями углерода, фосфора и серы (табл. 1). Магн. св-ва П. (табл. 2) зависят от хим. состава, способа выплавки, видов термообработки и формы изделий, физ. св-ва — от содержания легирующих элементов. Различают П. первого класса (с нормальными магн. св-вами), второго (с повышен- [c.167]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Отмечая роль различных составляюших, следует учитывать наличие других добавок и их концентрации. Так, например, в сплавах никеля с содержанием молибдена до 30 % никаких признаков ускоренного разъедания не было обнаружено. Но при добавках в двойные сплавы железа с молибденом никеля и хрома при определенных концентрациях возможно ускоренное окисление. [c.148]

    Черными металлами называют железо и марганец к цветным металлам относят тяжелые металлы — медь, свинец, олово, цинк и легкие металлы — алюминий, магний, кальций, натрий и калий к редким металлам — литий, бериллий, ванадий, вольфрам, молибден, хром, никель, кобальт, висмут, сурьму и др. к благородным металлам — платину, иридий, осьмий, родий, палладий, рутений, золото и серебро. [c.427]

    Разделение молибдена и рения. Анализируемый раствор выпаривают досуха и добавляют около 10 мг железа в виде хлорида железа (III) (если соли железа в пробе отсзггствуют) и I—2 капли насыщенного раствора перманганата калия. Прибавляют небольшой избыток аммиака и нагревают несколько минут на водяной бане, чтобы быть уверенным, что молибден и рений находятся в их высшей степени валентности [Мо и Re" ]. Остаток растворяют на холоду в смеси 25 мл соляной кислоты А) ч 2 мл раствора роданида калия. Переводят раствор в делительную воронку, содержащую 25 г ртути. Добавляют в один прием 20 мл эфира ч. д. а. и встряхивают до тех иор, пока водный раствор не станет бесцветным (в присутствии окрашенных ионов, как ионы хрома, никеля и т. д., до исчезновения окраски роданида железа). Обычно достаточно взбалтывать в течение 1 мин. Дают разделиться слоям и сливают слои ртути и водного раствора в другую делительную воронку. Добавляют к ним 1 мл роданида калия и Ъ мл эфира, энергично встряхивают в течение [c.399]

    Влияние железа, никеля и хрома иа коррозионную стойкость и мехаиические свойства сплавов системы цирконий — медь — молибден. Пятницкий В. H., Трегубов И. А, Сб. Физико-химия сплавов циркония . Изд-во Наука , 1968, 144—151. [c.270]

    Влияние железа, никеля и хрома на коррозионные и механические свойства сплавов циркоиий — молибден — ниобий и цирконий — медь — олово. Груздева Н. М., Адамо-в а А. С. Сб. Физико-химия сплавов циркония . Изд-во Наука , 1968, 215—222. [c.273]

    В растворах кипяшпх солей наиболее стойки сплавы алюминия с бериллием, цирконием, титаном, хромом, Сг5лгвы с кремнием, магнием, марганцем показали среднюю стойкость наименее стойкими в этих растворах были сплавы с оловом, висмутом, свинцом, железом, никелем, молибденом и вольфрамом [147], [c.77]

    Другие неорганические (алюминий, цинк, железо, кадмий, кобальт, марганец, медь, молибден, хром, никель, бериллий) и органические соединения (фенол, нефтепродукты, бенз(а)пирен, линдан-гамма изомер гек-сахлорциклогексана, гексахлорбензол) находились на уровнях, значительно меньших, чем их ПДК и не отличались в динамике своих колебаний между различными колодцами. Практически отсутствовали в водах исследованных колодцев такие органические загрязнители, как хлорированные углеводороды (хлороформ, 1,2-дихлорэтан, четыреххлористый углерод, 1,1-дихлорметан, тетрахлорэтилен, трихлорэтилен, бромоформ, диб-ромхлорметан, дихлорметан, бромдихлорметан), пестициды (2,4-Д, гептахлор, ДДТ, атразин, симазин), а также свободный и связанный хлор. [c.295]

    Интенсивность образования "дегидрогенизационного" кокса определяется содержанием и типом отлагающегося на катализаторе метахла сырья. Наибольший выход этого типа кокса обеспечивают коба ьт, никель, медь и в меньшей степени ванадий, молибден, хром и железо. Интенсивность образования кокса, помимо свойств ка — тали штора и химического состава сырья, определяется также кинетическими параметрами технологического процесса. [c.123]

chem21.info

Никель сплавы с медью - Справочник химика 21

    Каталитическое восстановление оксидов азота. Проводят 13 присутствии в качестве катализаторов сплавов из металлов платиновой группы (палладий, рутений, платина, родий) или составов, содержащих никель, хром, медь, цинк, ванадий, церий и др. Восстановителями служат водород, оксид углерода, метан п другие углеводороды [c.65]

    Рис 109. Скорость окисления сплавов никеля с медью в воздухе при 800—1000° С [c.141]

    Латуни. Латунями называют сплавы меди с цинком, содержащие от 10 до 50% 2п, иногда дополнительно легированные рядом других элементов (алюминием, оловом, кремнием, никелем и др.). В первом случае это так называемые простые латуни, во втором — специальные латуни. [c.252]

    Интенсивность процесса эрозии, определяемая как убыль массы металла с единицы его поверхности в единицу времени, обычно растет с ростом скорости потока. В табл. 9.2 показано влияние скорости потока морской воды на скорость эрозии некоторых металлов и сплавов. Из таблицы следует, что наиболее чувствительны к увеличению скорости потока сплавы меди в случае чугуна и углеродистой стали влияние скорости потока уменьшается, а для сплавов никеля оно совсем мало. Титан стоек при действии морской воды независимо от скорости ее потока, что объясняется большой прочностью пассивирующей окисной пленки. Скорость коррозии нержавеющей стали, в отличие от других материалов, в условиях быстрого потока морской воды уменьшается, что обусловлено более легким поступлением к ее поверхности кислорода, необходимого для поддержания пассивного состояния. [c.457]

    Хорошо известная диаграмма равновесия системы железо— углерод исключительно сложна. Она позволяет судить о том, как широк диапазон режимов термообработки и закалки. Сплавы цветных металлов имеют несколько иную кристаллическую структуру, поэтому для них используют ограниченный диапазон режимов термической обработки. Некоторые сплавы меди, алюминия и никеля можно подвергать различным методам термообработки. [c.316]

    В аппаратостроении широко применяют сплав никеля, называемый монель-металлом. В его состав входит 67—69% никеля, 28% меди, 1,5—2,5% железа и 1—2% марганца. Монель-металл отличается очень высокой прочностью, пластичностью и хорошими антикоррозионными свойствами, однако при контакте с другими ме таллами коррозионная стойкость его падает. [c.33]

    Аноды имеют решающее значение для показателей процесса рафинирования. Рафинировать можно медь любого состава черновую, конверторную, после огневого рафинирования (табл. У1П-1), сплавы меди с никелем, цинком, кобальтом, оловом и другими металлами, а также штейны с меньшим и большим содержанием серы, однако показатели процесса будут различными. Б тех случаях, когда пирометаллургическое рафинирование неэкономично (например, при отсутствии соответствующего топлива), электролитическому рафинированию подвергают медь, из которой неполностью удалены такие примеси, как цинк, железо, свинец, олово и висмут, а также кислород и сера. На какой стадии пирометаллургического процесса медь будет в достаточной мере очищена — в конверторах или только при огневом рафинировании в отражательных печах — определяется уровнем данного производства. [c.312]

    И. М. Кольтгоф, Д. Д. Лингейн. Полярография. Госхимиздат, 1948, (508 стр.). Книга содержит достаточную полную сводку теоретических и практических исследований в области полярографии. Приведена характеристика полярографического определения более чем 60 неорганических ионов и соединений и описаны методики анализа технических материалов сплавов меди, никеля, цинка, магния, свинца, сталей, руд и т. д. Отдельные главы содержат сведения по полярографическому определению органических соединений. В заключение описывается методика полярографирования с твердыми электродами, н способ амперометрического титрования. [c.488]

    Электролитическим способом чаще всего перерабатывают сплавы меди с никелем и кобальтом. Обычно аффинаж сплавов ведут при плотности тока 100—150 а мР- и температуре 50— 65° С. Плотность тока лимитируется диффузионной кинетикой и зависит от концентрации солей других металлов в растворе. [c.213]

    МАНГАНИН —сплав меди (83%), марганца (13%) и никеля (4%), электропроводность которого почти не изменяется с температурой. Применяют для изготовления проволоки, эталонов сопротивления и разных электротехнических приборов. [c.153]

    НЕЙЗИЛЬБЕР — сплав меди с никелем (13,5—16,5%) и цинком (18—22%). Не окисляется на воздухе. Н. применяют для изготовления медицинского инструмента, телефонной аппаратуры, посуды, художественных изделий. [c.171]

    НИКЕЛИН — сплав меди с никелем (26—35% Ni), содержит примеси марганца, железа, цинка. Характеризуется большим электрическим сопротивлением применяется при изготовлении реостатов и других электрических приборов. [c.174]

    Никель оказался самым перспективным металлом для изготовления химической аппаратуры, которая должна выдерживать разъедающее действие горячих щелочей, фтора, расплавленных солей и т. д. Химическая пассивность никеля при нагревании позволила использовать его в ракетной технике. Более трех четвертей получаемого никеля расходуется электровакуумной техникой. В настоящее время промышленность применяет несколько тысяч видов его сплавов. Так, с медью никель смешивается в любых пропорциях. Прекрасны механические свойства медноникелевых сплавов, известных еще древним металлургам. Никель обладает интересным отбеливающим свойством 20% никеля в сплаве полностью гасят красный цвет меди. Сплав нейзильбер (сплав меди, никеля и 20% цинка) и родственный ему сплав мельхиор (нет цинка, но присутствует 1 % марганца) применяют как в инженерных, так и в декоративных целях. Другой сплав меди (28—30%) и никеля (60—70%) нашел широкое применение в химическом машиностроении. Хорошо известны конструкционные никелевые и нержавеющие хромоникелевые стали. Инконель (сплав никеля, хрома с добавкой титана и других элементов) стал одним из главных материалов ракетной техники. Нихром (15% Сг и 60% Ni) широко используется в электронагревательных приборах. Большое количество никеля используется для никелирования. [c.400]

    Все три элемента применяются главным образом в виде металлов (преимущественно в сплавах). Сплавы меди с цинком называются латунью. Все остальные сплавы на основе меди называют бронзами (кроме сплавов с высоким содержанием никеля). Некоторые свойства чистых металлов приведены в табл. 7. [c.52]

    Основным потребителем хрома, молибдена и вольфрама является металлургия, где эти металлы используются при выработке специальных сталей. Как легирующий металл хром применяют для создания аустенитных нержавеющих и жаропрочных сталей и сплавов на основе меди, никеля и кобальта. Хромистые низколегированные стали (до 1,5% Сг) представляют собой материалы повышенной прочности. Инструментальные стали содержат больше хрома (до 12%), что придает им твердость и износостойкость. Содержание хрома свыше 12% обеспечивает высокую коррозионную стойкость сталей. Нержавеющие стали содержат часто кроме хрома и молибден, который увеличивает жаропрочность сталей и улучшает свариваемость. Большие количества хрома расходуются в процессах хромирования главным образом стальных изделий. Антикоррозионные и декоративные покрытия получают при нанесении хрома на подслой из никеля и меди. [c.290]

    По сравнению с механической полировкой электрополировка менее трудоемка, лучше поддается автоматизации, позволяет обрабатывать металлы, которые трудно полировать механически. Кроме того, лри электрополировке не происходит искажения структуры металла. Электрополировка широко используется для изучения структуры металлов и сплавов, а также в промышленности для обработки нержавеющей и углеродистой сталей, никеля, алюминия, меди и ее сплавов. [c.373]

    Если пучок характеристического рентгеновского излучения направить на сплав двух соседних в периодической системе элементов, например излучение, получающееся при захвате электрона /у-оболочки 0а, на сплав меди и никеля, то поглощение излучения будет зависеть от состава сплава. Это связано с тем, что никель поглощает характеристическое рентгеновское излучение сильнее меди, так как энергия перехода Са- 2п -Ь /IV, равная 8,7 кзв, недостаточна, чтобы вызвать /(-пере.ход у меди (энергия перехода 9,0 кэв), и достаточна для /(-перехода у никеля (8,4 аэв). Это дает возможность анализировать сплавы меди с никелем по поглощению излучения Оа. [c.365]

    Марганец применяется главным образом в производстве легированных сталей. Марганцовистая сталь, содержащая до 15% Мп, обладает высокими твердостью и прочностью. Из нее изготовляют рабочие части дробильных машин, щаровых мельниц, железнодорожные рельсы. Кроме того, марганец входит в состав ряда сплавов на основе магния он повыщает их стойкость против коррозии. Сплав меди с марганцем и никелем — манганин (см. 200) обладает низким температурным коэффициентом электрического сопротивления. В небольших количествах марганец вводится во многие сплавы алюминия. [c.663]

    Manganin манганин (сплав меди, марганца, никеля и железа для электросопротивлений) [c.643]

    При решении вопроса о допустимости контакта между металлами можно также рукоиодствоваться следующими данными. Все металлы разделены на пять групп первая группа магний вторая — п,и1гк, алюминий, кадмий третья — железо, углеродистые стали, свинец, олово четвертая — никель, хром, хромистые стали (Х17), хромоиикелевые стали (Х18Н9) пятая — медноникелевые сплавы, медь, серебро. [c.182]

    Чистый никель в химическом машиностроении нашел сравнительно ограниченное применение, несмотря на то что, помимо коррозионной стойкости, он обладает повышенной жаростойкостью, значительной пластичностью, хорошими механическими показателями и способностью подвергаться различным видам механической обработки (никель легко прокатывается в горячем и холодном состоянии). Объясняется это тем, что никель не имеет особых преимуществ по сравнению с нержавеющими сталями, но в некоторых средах, в которых легированные стали непригодны, нашли примергеиие сплавы никеля с медью и его сплавы с молибденом. [c.255]

    Сплавы никеля с медью. Никель с медью дает непрерывный ряд твердых растворов. Эти сплавы известны под названием мокель-металла. [c.257]

    Как коррозионностойкий материал применяется свинец чистоты не меиее 99,2%- Примесн в свинце (Си, 5п, Аз, Ре, В] и др.) увеличивают прочностные показатели свинца, но уменьшают его пластичность. Примеси мышьяка придают свинцу хрупкость. Имеются указания, что примеси серебра, никеля и меди повышают коррозионную стойкость свинца, если они распределены в сплаве равномерно. Однако в процессе коррозии на поверхности свинца скапливаются эти благородные примеси, образующие микрокатоды, что может привести к повышению скорости коррозни свинца. [c.261]

    Использование никеля в технике. Большое количество никеля используется для никелирования, т. е. обработки поверхностей из-де.чий из других мегаллов. Никель добавляют как легирующий материал в стали, придавал им особые свойства он является основой некоторых жаропрочных сплавов его сплавы с медью обладают ценными свойствами. Таковы константан и никелин, использую-Н1,исся в качестве материала для электропроводов, гейзильбер — иеокисляюшийся сплав, содержащий кроме никеля и меди также и цинк. Никель применяется также в сплавах с алюминием. [c.318]

    Защитно- декоратив- ное Трехслойное покрытие медь никель хром Двухслойное покрытие медь олово — никель (сплав) 36 15 0,5 36 1о Детали, требующие защитно-де-коративной отделки Толщина хромового покрытия средняя расчетная. Необходима механическая гл-жцеВ к -полировка подслоев [c.934]

    Пресная и, в большой степени, морская вода сильно снижают усталостную прочность стали. Сплавы никеля, медь и сплавы меди хорошо сопротивляются коррозионной усталости в различных водных средах. Это обусловлено их более высоким сопротивлением коррозии в этих средах. Чистые металлы (ие склонные к коррозии под напряжением) подвержены коррозн-оппой усталости. [c.455]

    Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31]. [c.338]

    В табл. 22.1 представлены составы некоторых промышленных сплавов на основе никеля, содержащих медь, молибден или хром Сплавы N1—Си легко поддаются прокату и механической обра ботке для сплавов N1—Сг эти операции более затруднены Сплавы N1—Мо—Ре и N1—Мо—Сг плохо поддаются обработке [c.362]

    Чтобы увеличить срок службы оборудования, на наиболее опасных его участках применяются стойкие против коррозии материалы— легированные стали Х5М, 0X13, латунь, сплав никеля и меди, называющийся моиель-металлом. Для снижения стоимости аппаратуры ее изготавливают из двухслойного металла внутренняя поверхность, подверженная действию вредных соединений, делается из легированных металлов, нарул[c.153]

    Олово — никель. Сплав олово — никель, содержащий 60 — 65% Зп, обладает высокой антикоррозионной стойкостью и хорошими декоративными свойствами. Этот сплав представляет собою интерметаллическое соединение (Зп—N1), которое можно получить только электролитическим способом. Электролитическое покрытие этим сплавом имеет красивый внешний вид (розовый оттенок), обладает повышенной твердостью и износостойкостью и при определенных условиях электролиза получается блестящим непосредственно из ванны без полировки. Покрытие наносится с защитнодекоративной целью на изделия из меди и ее сплавов пли из стали с медным подслоем взамен хромирования и никелирования, в некоторых случаях взамен лужения при повышенных требованиях к механическим свойствам поверхности (твердость, износостойкость), а также взамен серебрения и палладирования в производстве печатных плат. [c.437]

    В качестве катализаторов гидрирования применяют никель, платиновую и палладиевую чернь. В последнее время используются сложные катализаторы, состояш,ие из смеси окислов хрома и некоторых других металлов (меди, цинка). Особенно активным катализатором является никель Ренея, который получается при обработке сплава никеля с алюминием (1 1) едким натром. Катализаторы применяются в мелкораздробленном состоянии, в большинстве случаев на носителе (активированный уголь, асбест) и при различных температурах. В присутствии никеля Ренея, платины и палладия гидрирование обычно проводят при комнатной температуре, а в присутствии никеля и меди — при нагревании. [c.147]

    А. Классен. Электроанализ. ОНТИ, 1934, (356 стр.), перевод с немецкого. 5 втор в течение ряда лет занимался разработкой этого метода и поэтому книга в значительной степени представляет собой сводку собственных экспериментальных исследовани11 автора. Монография содержит главы об определении и разделении свыше 60 элементов путем электролиза, а также о применении этого метода при анализе технически) материалов руд, сплавов меди, цинка, олова, свинца, никеля и др. [c.489]

    Если при рассмотрении анодных процессов пренебречь включениями малых количеств таких окислов, как N10, ЗЮг, А Оз, то окажется, что отлитые аноды будут представлять собой сплав, состоящий в основном из трех фаз. Первая фаза—кристаллы твердого раствора никеля с медью, железом, кобальтом, платиноидами и углеродом. Вторая фаза будет состоять из кристаллов N1382, а третья — из кристаллов СигЗ. [c.303]

    Как следует из диаграммы состояния системы Си—N1—8 (рис. 141), при застывании, например, сплава, содержащего 95% N1, 4% Си и 1% 8, вначале будут выпадать кристаллы твердого раствора никеля с медью (и другими металлическими примесями), затем начнется образование кристаллов двойной эвтектики из твердого раствора и су 1ьфида никеля и, наконец, тройной эвтектики из кристаллов твердого раствора, Сиг8 и N1382. [c.303]

    Потенциал никеля в значительной мере завиоит от содержания меди (рис. 178). Медноникелевый сплав с 12,5% (ат.) Си имеет потенциал меди. Но не нужно забывать, что в файнштей-не сульф,иды никеля и меди дают эвтектику. 0бж1иг сульфидов, проводимый до температуры 900°, дает смесь NiO и СиО. При воостаноБлении до температуры 700° получается двухфазный порошок, однако, начиная с 700° и выше, начинается заметная диффузия меди в никель с образованием твердого раствора. Поэтому медистую закись никеля нужно восстанавливать при возможно низкой температуре. [c.375]

    Медь применяется в виде металла, многочисленных сплавов и соединений. Около 40% всей добываемой меди идет на изготовление электрических проводов и кабелей. Из меди изготовляют нагревательные аппараты. Сплавы меди с другими металлами широко применяются в машиностроительной промышленности, в электротехнике, в судостроении, энергетической промышленности. К важнейшим сплавам меди относятся бронза (90% Си, 10% Sn), латунь (60% Си, 40% Zn), мельхиор (80% Си, 20% N1), манганин (85% Си, 12% Мп, 3% N1), нейзильбер (65% Си, 20% Zn, 15% Ni), кон-стантан (59% Си, 40% N1, 1% Мп). Все медные сплавы обладают высокой стойкостью против атмосферной коррозии. Современные серебряные монеты сделаны из сплава меди с никелем ( u+Ni). [c.418]

    Сплавы меди с никелем подразделяют на конструкционные и электротехнические. К конструкционным относятся Мельхиоры и нейзиль-беры. Мельхиоры содержат 20—30% никеля и небольшие количества железа и марганца (остальное — медь), а нейзильберы содержат 5— 35% никеля и 13—45% цинка (остальное — медь). Благодаря высокой коррозионной стойкости конструкционные медно-никелевые сплавы широко применяются в энергетике. Из них изготовляют радиаторы, трубопроводы, дистилляционные установки для получения питьевой воды из морской. К электротехническим медно-никелевым сплавам относятся константан (40% N1, 1,5% Мп, остальное Си) и манганин (3% N1, 12%Мп, остальное Си), которые отличаются своим высоким электрическим сопротивлением, не изменяющимся с температурой. Они идут на изготовление магазинов сопротивления. К электротехническим относится и сплав копель (43% N1, 0,5% Мп, остальное Си), применяемый для изготовления термопар. [c.306]

    Мельхиор — сплавы меди с никелем (меди — от 50 до 60%, никеля — от 50 до 407о). Используется в электротехнике, для изготовления посуды. [c.321]

chem21.info

иридий медь никель - Справочник химика 21

    Большое перенапряжение водорода на ртути позволяет работать в широком диапазоне потенциалов и выделять большое число металлов, образующих амальгамы. Схема ячейки для электролиза на ртутном катоде приведена на рис. 29. Без регулирования потенциала рабочего электрода в 0,1 н. серной кислоте осаждаются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром, молибден, свинец, висмут, селен, теллур, ртуть, золото, платина, иридий, родий и палладий. Плохо осаждаются марганец, рутений, мышьяк и сурьма. Полностью остаются в рас- [c.59]     Устройство твердого электрода похоже на устройство стеклянных электродов. Изготовляются из благородных металлов (платина, золото, серебро, иридий) и неблагородных (алюминий, медь, никель, свинец, титан и др.). [c.273]

    Применение ионного обмена в анализе платиновых металлов. I. Отделение меди, никеля, железа и свинца от платины, палладия, родия и иридия [1753]. [c.307]

    При электролизе сернокислых растворов солей на ртутном катоде выделяются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром , молибден, свинец, висмут, селен, теллур, ртуть, золото, платина,, иридий, родий, палладий. Остаются полностью в растворе алюминий, бериллий, бор, тантал, ниобий, вольфрам, редкоземельные элементы, титан, ванадий, цирконий и др. Рутений, мышьяк и сурьма количественно не выделяются. [c.138]

    Анализ капли расплава. Этим методом определяют примеси в меди, никеле, кобальте, титане, золоте, иридии, олове, свинце, серебре. Чувствительность анализа капли расплава примерно в 10 раз большая, чем первым методом, вследствие испарения примесей из большой навески пробы (порядка 0,5—1 г), а также в результате ее фракционного испарения, при котором в ряде случаев удается устранить наложение линий основы на линии примесей. Для анализа кусочки металла, листовой материал, стружку и металлический порошок окисляют, а затем из окислов прессуют брикеты или же брикетируют пробу без ее пред-варительно.го окисления. Из слитков и прутков нарезают на токарном станке таблетки, которые также обычно заранее окисляют в специальных камерах, где в атмосфере кислорода в течение нескольких секунд поддерживается дуговой разряд между образцом и подставным электродом. [c.253]

    Подобные методики используют также для разделения и определения одного или более компонентов следующих смесей сурьма, свинец и олово свинец, кадмий и цинк серебро и медь никель, цинк, алюминий и железо родий и иридий. [c.428]

    Методы позволяют определять иридий в присутствии родия, меди, никеля и некоторых других элементов. Мешают определению золото и рутений. [c.146]

    Определению иридия не мешают родий, платина, палладий, медь, никель, селен и теллур. Железо может быть связано в комплекс добавлением 2 мл 60%-ной фосфорной кислоты. Определению мешают золото и большой избыток рутения. [c.147]

    Метод рекомендуется для определения малых количеств золота (до 0,1 г). Определению не мешают пятикратный избыток платины, равные количества родия и иридия и большой избыток меди, никеля, кобальта, свинца и кадмия. Железо маскируют фтористым натрием. Определению мешает палладий. [c.156]

    Если наряду с иридием в растворе присутствует родий, то в процессе выпаривания раствора со смесью кислот происходит образование малорастворимого осадка, который удается растворить при нагревании разбавленного раствора на водяной бане. Однако такая обработка и, возможно, недостаточно полное растворение осадка отражаются на оптической плотности, если концентрация родия превышает 8—10 мкг/мл. Присутствие меди, никеля, железа в количествах до 200 мкг/мл понижает оптическую плотность раствора не более чем на 2%. [c.175]

    Рс1(ЫНз)4]2- восстанавливается на капельно(М ртутном электроде на фоне 0,4 М аммиачного буфера, образуя вол(ну с = =—0,82 в. Платина (IV) в этих условиях дает плохо воспроизводимую волну, начинающуюся от О в. Заметные количества родия и иридия искажают волну палладия. Серебро, медь, никель и хром не влияют на величину и положение волны палладия. Равные количества золота (III) и железа (III) уменьшают ток палладия на 15%. Метод пригоден для определения от il,8 10 до 2,7 10 a М палладия. [c.193]

    Отделение платины, палладия, родия, иридия от меди, никеля, свинца, железа и теллура [69] [c.257]

    Платина — элемент редкий и в природе находится в рассеянном состоянии. Самородная платина обычно представляет собой естественный сплав с другими благородными (палладий, иридий, родий, рутений, осмий) и неблагородными (железо, медь, никель, свинец, кремний) металлами. Такая платина (ее называют сырой или шлиховой) встречается в россыпях в виде тяжелых зерен размером от 0,1 до 5 мм. Содержание элементарной платины в этом природном сплаве колеблется от 65 до 90%. Самые богатые уральские россыпи содержали по нескольку десятков граммов сырой платины на тонну породы. Такие россыпи очень редки, как, кстати, и крупные самородки. Сырую платину, подобно золоту, добывают из россыпей промыванием размельченной породы на драгах. [c.184]

    При экстракции комплексов металлов с тиооксином можно применять следующие маскирующие вещества концентрированную соляную кислоту (для маскирования железа, молибдена, ртути, серебра, висмута, олова и кобальта), тиомочевину (для маскирования меди, серебра, золота, платины, ртути, рутения и осмия), фтористый натрий (для маскирования железа и олова) и цианистый калий (для маскирования железа, серебра, золота, платины, рутения, осмия, иридия, палладия, никеля и кобальта). [c.196]

    Нитрит натрия — один из самых старых и наиболее часто употребляемых осадителей для золота. Интересный вариант метода описан Джеймсоном [448], который добавлял к водному раствору золота сначала палочку нитрита калия,а затем концентрированную серную кислоту. Золото выделялось в течение нескольких минут в виде больших хлопьев, которые легко отделялись декантацией. Хольцер и Цауссингер [143] применяли нит. рит натрия при осаждении золота из очень разбавленных солянокислых растворов ювелирных сплавов платины (методика 29). Раствор нейтрализовали по фенолфталеину до pH 8,3—10 и отмывали отфильтрованное золото азотной кислотой. Гилкрист [144] осаждал золото нитритом натрия при pH около 1,5 (до красно-оранжевой окраски по тимоловому синему) и затем нейтрализовал до pH 8—9. В методике 30 описано осаждение иридия, меди, цинка и никеля и последуюш,ая экстракция неблагородных металлов. Автор обращал внимание на необходимость отмывания осадка гидроокисей от нитрита перед их растворением в кислоте, чтобы избежать растворения золота. Позднее Гилкрист [139] установил, что полное осаждение золота нитритом натрия происходит при pH 4,8—6,4, что устанавливается по изменению окраски хлорфенолового красного. Нитрит натрия — один из лучших реагентов, связывающих платиновые металлы в растворимые комплексы, и поэтому Гилкрист [139] применял [c.84]

    Без контролирования потенциала в среде 0,1 н. серной кислоты осаждаются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром, молибден, свинец, висмут, селен, теллур, ртуть, золото, платина, иридий, родий, палладий. С трудом выделяется марганец. Рутений, мышьяк и сурьма количественно не осаждаются. Остаются полностью в растворе алюминий, бор, бериллий, тантал, ниобий, вольфрам, редкоземельные элементы, титан, цирконий, уран, ванадий и плутоний. Некоторые элементы переходят при этом из высшей степени окисления в низшую, например титан (IV) восстанавливается до титана (III), уран (VI) до урана (III). [c.240]

    Платина, иридий, родий, рутений, осмий, золото, цирконий, железо, кобальт, медь, никель и хром не мешают определению. [c.943]

    Содержание иридия, родия, осмия и рутения в большинстве природных материалов незначительно. Поскольку общее содержание платиновых металлов в самых богатых в мире рудах составляет лишь несколько граммов на тонну, очевидно, чувствительные спектрофотометрические методы весьма удобны для прямого открытия или определения этих металлов. Как и следовало ожидать, спектрофотометрическому определению иридия мешают другие благородные металлы, а также железо, медь, никель и часто хром. По аналитическим свойствам наиболее близким к иридию платиновым металлом является родий. [c.199]

    Просеиванием платиновой губки через нейлоновое сито 325 меш получают около 35 г платинового порошка. Пусть установлено, что палладий и кремний содержатся в нем в концентрации порядка 50 10 7о, а другие примеси— около 30-10 %, Положим, что нужно приготовить головной эталон, содержащий по 0,10% палладия и кремния и по 0,06% золота, родия, серебра, иридия, железа, никеля, меди, магния и кальция. Данные, необходимые для приготовления такого головного эталона, приведены в табл. 25. [c.306]

    Исследования металлических сплавов методами физико-химического анализа в сочетании с изучением их кристаллических структур показывают, что поведение металлов при растворении их друг в друге аналогично поведению жидкостей при том же процессе. Подобно жидкостям, металлы по растворимости их друг в друге можно разделить на растворимые в любых отношениях и ограниченно растворимые. К первым можно отнести системы медь-никель, платина-иридий, серебро-золото и др. Такие системы образуют непрерывный ряд твердых растворов. [c.378]

    Для изготовления керамических красок в качестве основных материалов применяют окислы и соединения кобальта, хрома, железа, марганца, сурьмы, меди, никеля, олова, цинка, урана, родия, иридия, золота, платины и серебра. [c.11]

    Известны многочисленные сплавы палладия с платиной, иридием, золотом, серебром, медью, никелем, кобальтом и ртутью. [c.653]

    Первые два метода заключаются в том, что иридий (IV) в виде Nailr lg титруют восстановителем (гидрохиноном или аскорбиновой кислотой) по току восстановления иридия на платиновом электроде при +0,4—0,5 в (Нас. КЭ) в солянокислом или хлорид-ном растворе с pH 1,5 (кривая титрования типа а). Можно было бы воспользоваться также током окисления гидрохинона или аскорбиновой кислоты при более положительных потенциалах, но при титровании иридия этого делать не следует, так как ионы иридия (III), появляющиеся в растворе во время титрования, также легко окисляются при тех же потенциалах, что гидрохинон и аскорбиновая кислота, и конечную точку заметить не удастся. При титровании по току восстановления иридия (IV) конечная точка выражена очень резко, что дает возможность определять даже малые концентрации иридия порядка 1 10 М, т. е. около 0,015 мг в титруемом объеме. Платина и палладий, а также медь, никель, селен и теллур не титруются гидрохиноном йли аскорбиновой кислотой и не восстанавливаются на платиновом электроде при указанном потенциале, поэтому не мешают определению иридия. Присутствие же золота недопустимо, так как оно ведет себя при титровании совершенно так же, как иридий (IV) —восстанавливается и на электроде и в растворе гидрохиноном. Рутений (IV) также реагирует с гидрохиноном, но его влияние может быть ослаблено соответствующей обработкой раствора, так же как и влияние железа (последнее просто связывают фосфорной кислотой). [c.220]

    При титровании гексаметилендитиокарбаматом и тионали-дом применяют висмут в качестве индикатора, что позволяет увеличить резкость конечной точки, так как соединение висмута с указанными реактивами окисляется с большей скоростью, чем свободный реактив. Определению палладия при этом не мешают, в определенных пределах по отношению к нему, ионы следующих элементов платины, родия, иридия, меди, железа, серебра, никеля, кобальта, цинка, свинца. [c.278]

    Платиновые металлы — платина, палладий, родий, иридий, рутений и осмий — в природных материалах обычно сопутствуют друг другу. Они встречаются в металлическом состоянии в виде многочисленных природных сплавов, содержащих также золото, железо, медь, никель, кобальт и др. В аллювиальных отложениях, образованных хромитом, магнезитом, ильменитом, шпинелью, цирконом и кварцем, наиболее часто присутствует самородная платина (до 75—85%) в виде белых или серых зерен (уд. в. 16—19, твердость 4—4,5), растворимых в царской водке. В этих же россыпях обнаруживают осмистый иридий в виде твердых плоских зерен белого или серого цвета или в форме кристаллов гексагональной сис1емы (уд. в. 19—21, твердость 6—7). В зависимости от содержания главных компонентов — осмия и иридия — различают минералы невьянскит (преобладает иридий) и сысертскит (преобладает осмий). Иногда осмистому иридию сопутствует золото. Наряду с осмием и иридием, составляющими основную часть минерала (от 70— 90%), в нем содержатся рутений, платина, родий и небольщие количества железа и меди. Осмистый иридий не растворим в царской водке. [c.5]

    Если содержание платины в растворе велико, рекомендуется переосадить осадок глиоксимата палладия. Золото и железо мешают определению преобладающее количество меди, никеля и примерно соизмеримые количества родия, иридия и рутения не мешают. [c.113]

    Определению золота не мешают серебро, медь, никель. Железо связывают во фторидный комплекс прибавлением бифтори-,да натрия (калия). Мешают определению иридий и рутений. Определение конечной точки титрования производят либо при помощи индикаторов, либо потенциометрическим или амперометрическим методами. [c.154]

    Если в анализируемой пробе присутствует h3SO4, раствор-следует прокипятить с концентрированной НС1, прежде чем добавлять хлористое олово. Для сравнения используют чистый реактив. Родий может быть определен хлористым оловом в присутствии равных и меньших количеств иридия. Фотоколоримет-рическому определению мешают платина, палладий, рутений, осмий, хром и золото не мешают медь, никель, кобальт. [c.169]

    Поскольку чувствительность прямого спектрального метода недостаточна, при анализе бедных материалов применяют комбинированные методы, Сочетающие обогащение (пробирное,, химичеокое, ионообменное) со опектральным определением. Подробное критическое рассмотрение комбинированных методов-изложено в специальных работах [390, 399]. При пробирном обогащении (юм. гл. VI, стр. 251) получают сплав благородного металла с металлом —коллектором (свинец, серебро, медь, медь — никель, железо — никель), который подвергают спектральному анализу. Возможность и точность метода анализа определяются не только способом определения. металла, но также и полнотой его концентрирования. Так, в свинцовом сплаве можно определить лишь золото, платину и палладий [373—375], в серебряных корольках — золото, платину, палладий и родий [370, 392, 400], а в медно-серебряном сплаве также рутений и-иридий [392]. [c.204]

    При цементации платиновых металлов цинком из растворов, -содержащих медь, никель, железо, свинец, селен и другие элементы, в осадок выделяются не только платиновые металлы и медь, но также свинец, частично железо, никель и другие примеси. Количестзенно.го осаждения иридия цементацией достигнуть практически очень трудно, хотя указывается на возможность полного выделения этого металла в случае применения порошкообразного 1магния [40]. Особенно трудно выделяются платиновые металлы из раствора, в котором они содержатся в форме аммиачных комплексов. [c.253]

    Одним из наиболеее распространенных способов отделения неблагородных металлов (меди, никеля, железа, свинца, теллура ) от платиновых металлов является гидролитическое осаждение ( нитрование ([64— 66]). Метод состоит в осаждении неблагородных металлов в форме гидроокисей, основных солей, или карбонатов из растворов, содержащих платину, палладий,, родий и иридий в виде комплексных нитритов. [c.255]

    Для отделения платины, палладия,родия,иридия и рутения от меди, -никеля, железа, свинца и теллура используют апосаб-кость платиновых металлов образовывать устойчивые комплексные анионы с различными лигандами типа [МХб] , [МХе] и ГМХ4] " (где X—С1, N02 и др.) в отличие от неблагородных [c.256]

    Для отделения больших количеств (порядка нескольких десятков граммов) меди, никеля и железа от платины, палладия родия и иридия применяют две колонки с катионитом [84]. Вначале пропускают анализируемую пробу через большую колонку (70x4 см), затем, после выпаривания фильтрата до малого [c.257]

    Фильтрат V от осаждения каломелью, содержащий родий, иридий и неблагородные металлы, объединяют с раствором I, добавляют 0,2 г Na l и выпаривают до сухих солей. Соли смачивают 1 мл НС1 (1 1). Стакан накрывают часовым стеклом, нагревают на водяной бане 5 мин., добавляют 100 мл воды, проверяют кислотность раствора (pH 1,5) и отделяют родий и иридий от неблагородных металлов при помощи катионита (см. гл. VI, стр. 256). Медь, никель и железо вытесняют с катионита раствором 3AI H . Солянокислый раствор выпаривают до минимального объема, добавляют царскую водку и кипятят для разрушения органических веществ, затем вьшаривают [c.268]

    Определение меди, никеля и железа [51]. Аффинированный иридий растворяют в соляной кислоте при помощи переменного тока (см. гл. IV, стр. 98). Неблагородные металлы отделяют от иридия ионным обменом и определяют псхлярагра ф -Ч0СКИ1М (медь, икель) или колориметрическим (железо) методом. [c.291]

    Ацетилацетонат меди является хорощим катализатором при по-, лучении соответствующих альдегидов или кислот жидкофазным окислением толуола или этилбензола кислородом или воздухом. Скорость реакции периодически повыщают добавлением неорганического адсорбента, например окиси алюминия или кизельгура Нагреванием при 160—300° С и пониженном давлении 1 моль ацетилацетоната меди с 2 моль нитрила, содержащего группировку [ = С(СМ)2]2, получаются полимерные продукты. Так, например, был получен черный нерастворимый и неплавкий полимер (содержание меди 17%) мозаичной структуры, в котором атом меди координирован с макроциклическим азотсодержащим лигандом Ч Олефины можно полимеризовать при наличии смещанного катализатора из ацетилацетоната меди и триэтилалюминия или диэтилалюминийхлорида . Полиэтилен ударопрочный получается полимеризацией этилена при низком давлении (до 45 ат) в растворителе при 80— 180° С в присутствии ацетилацетонатов, например меди, никеля, кобальта, платины или иридия, и треххлористого титана . [c.287]

    Н. К. Пшеницын, К. А. Гладышевская и Л. М. Ряхова [49] исследовали условия наиболее полного отделения катионитом меди, никеля и железа от платины, палладия, родия и иридия. [c.223]

    Соляная кислота ( Концентрирован ная (уд вес 1,19) То же Разбавленная Высокая Обычная Обычная Вольфрам, тантал, золото, иридий, родий, эбонит (до 66°). мягкая резина (до 110°), продо-рит (до 80°), горная порода—андезит, стекло, бакелет Те же и, кроме того, железокремнистый сплав (14—16% Si), свинец (медленно разрушается), керамика (трубопроводы, насосы), эбонитовая обкладка (например, железных труб) Те же, что и для концентрированной при высокой температуре й, кроме того, железокремнистый сплав (14—16% S ), твердый свинец (с добавкой сурьмы), алюминиевая брон , ыед-ноникелевые сплавы, кремнистая медь, никель, хромовое покрытие, молибденовое покрытие [c.36]

    Диметил-4-имино-5-оксиминоаллоксан [361] осаждает красный палладиевый хлорокомплекс при pH 1—3. Весовая форма хорошо фильтруется ее сушат при 100—110°. Платина, осмий, иридий, золото, никель, кобальт и медь мешают определению. [c.52]

    По указанным выше причинам приведенные в этих таблицах данные, касающиеся влияния примесей, могут быть истолкованы по-разному. В некоторых случаях авторы методов проверяли влияние благородных и неблагородных металлов, входящих в состав природных материалов, а в других проверяли влияние металлов, выбранных произвольно. При определении платины или палладия в присутствии сравнительно малых количеств родия или иридия валвлиянии меди, никеля и железа. К сожалению, в большей части спектрофотометрических методов не проверено влияние свинца, который применяют при пробирном способе концентрирования платиновых металлов. Иногда прн разработке спектрофотометрического метода проверяют влияние большего числа примесей, чем это необходимо. Длинный список немешающих катионов не представляет ценности, поскольку многие из этих катионов редко сопутствуют платиновым металлам. Не представляет ценности также проверка влияния примесей без учета предшествующих определению стадий, а также способов растворения. Нужно надеяться, что авторы новых методик проверят влияние меди, никеля, железа, хрома, платиновых металлов, золота, серебра и свинца и приспособят новые спектрофотометрические методики для определения платиновых металлов в природных и промышленных продуктах. Тогда в них не будет излишних данных. [c.140]

    Американская фирма phuips petroleum" разработала способ очистки сточных вод методов ЖФО на твердом катализаторе [26]. Состав ка, ализатора не сообщается. Отмечается, что катализатор обладает высокой окислительной активностью, хорошей механической и химической стабильностью, а также длительньш сроком службы. Сточные воды, предварительно нагретые под давлением 7 Ша, пропускаются через катализатор при температуре 274°С. В качестве окислителя используется кислород воздуха или чистый кислород. Этой же фирмой ранее разработан устойчивый катализатор для работы в жестких окислительных условиях в водной среде алюминат цинка промотируют прокаливанием смеси окиси алюминия и цинка при температуре 900-Ю00°С [27]. В качестве промоторов используются два металла один из группы медь, никель, висмут, платина, палладий, иридий, рений второй -редкоземельный металл,- например церий или лантан. Промотор вносится в количествах 0,05-20% мае. Процесс окисления в этом случае проводят при температуре 170-290°С, давлении 4,9 МПа и мольном соотношении вода кислород, равном 10 1 или 200 1 в зависимости от качественного и количественного состава загрязнений. [c.12]

chem21.info

Никель хромом - Энциклопедия по машиностроению XXL

Многослойное — медь — никель — хром 04 Оксидное 05  [c.181]

Если рассмотреть, как влияют растворенные в железе элементы на прочность (которое следует ожидать в соответствии с изменением параметра решетки, рис. 83,а), то никель, хром и марганец упрочняют железо слабо (возможное изменение структуры при этом не рассматривается), а вольфрам, молибден и кремний сильно, причем кремний, сжимающий решетку, упрочняет сильнее вольфрама и молибдена, расширяющих решетку железа.  [c.102]

Стойкость различных металлов против коррозионно-эрозионного воздействия жидкого натрия различна. Высокой стойкостью в натрии обладают никель, хром, молибден, железо, цирконий ограниченно устойчивы титан и нержавеющая сталь, а углеродистая сталь, алюминий, платина неустойчивы. В наибольшей степени требованиям современной техники удовлетворяют аустенитная нержавеющая сталь и цирконий, обладающие оптимальным сочетанием требуемых свойств.  [c.560]

При легировании в расплавленный чугун вводят твердь[е или расплавленные легирующие элементы (никель, хром, титан и до.) в целях получения заданного химического состава и придания ему требуемых механических и эксплуатационных свойств.  [c.159]

Катодные металлические покрытия, электродный потенциал которых более электроположителен, чем потенциал основного металла, могут служить надежной защитой от коррозии только при условии отсутствия в них пор, трещим и других дефектов, т. е. при условии их сплошности, так как они механически препятствуют проникновению агрессивной среды к основному металлу. Примерами катодных защитных покрытий являются покрытия железа медью, никелем, хромом и другими более электроположительными металлами.  [c.319]

Е Сплав никель — хром/сплав медь — никель  [c.274]

К Сплав никель — хром/сплав никель—алюминий  [c.274]

Высокие литейные свойства имеют сплавы, содержащие в структуре эвтектику. Эвтектика образуется в сплавах, в которых содержание легирующих элементов больше предельной растворимости в алюминии, Поэтому содержание легирующих элементов в литейных сплавах выше, чем в деформируемых. Чаще применяют сплавы А1—Si, Л1—Си, А1 —Mg, которые дополнительно легируют небольшим количеством меди и магния (А1—Si), кремния (А1—Mg), марганца, никеля, хрома (Л1 —Си). Для измельчения зерна, а следовательно, улучшения механических свойств в сплавы вводят модифицирующие добавки (Ti, Zr, Н, V и др.). Механические свойства некоторых литейных сплавов алюминия приведены в табл. 23.  [c.333]

Многослойное—медь—никель—хром 04 Мн. М. Н. X.  [c.65]

Активационная поляризация определяет также кинетику осаждения или растворения металла. Она мала для таких металлов, как серебро, медь, цинк, но возрастает для металлов переходной группы, например железа, кобальта, никеля, хрома (см. табл. 4.1). Природа анионов электролита больше влияет на перенапряжение процессов разряда и ионизации металла, чем на реакцию выделения водорода.  [c.53]

В атмосфере серы по тем же причинам, что и в случае кислорода, легирование никеля хромом (до 2 %) ускоряет реакцию при  [c.197]

Влияние химического состава материала. При испытании сталей с примесями углерода, магния, никеля, хрома, ванадия, меди, бора и фосфора замечено, что каждый из них повышает сопротивление усталости в такой же пропорции, в какой они повышают предел прочности материала.  [c.353]

С, применяют сплавы на основе никеля, хрома, кобальта  [c.105]

Для применения в атмосферных условиях рекомендуются стали, в состав которых входит не менее 0,3% меди. Положительное влияние меди еще больше усиливается при дополнительном легировании другими добавками, такими, как никель, хром, алюминий, кремний, фосфор, при общем содержании легирующих элементов не менее 1,5 %. Эти элементы усиливают склонность стали к пассивированию, а фосфор, переходя в пленку продуктов коррозии, дополнительно усиливает ее защитные свойства, образуя фосфатные соединения.  [c.11]

Металл покрытия. ........ Медь Цинк Кадмий Никель Хром  [c.105]

Анодными по отношению к железу являются магний, алюминий, цинк, кадмий, Никель, хром, медь, серебро, золото, нержавеющая сталь и медь работают в контакте с железом в качестве катодов и способствуют увеличению коррозии.  [c.53]

Никель-хром-медно-никелевая термопара (тип Е) для работы в интервале температур от —100 до 700 °С, а кратковременно — до 900 °С.  [c.93]

С целью улучшения механических свойств сталей применяют легирующие присадки — никель, хром, молибден, вольфрам, титан и пр. Введение легирующих примесей увеличивает стоимость и дефицитность стали.  [c.211]

Сплавы типа стеллитов. К группе стеллитов относятся сплавы кобальта, никеля, хрома, вольфрама (иногда молибдена) и углерода. Основным компонентом является кобальт или кобальт и никель, содержание которых в различных марках стеллитов составляет 45—65%, Содержание хрома 20—35%, вольфрама (или W-Ь Мо) 3—17% и углерода 0,5—2,7%. Сплавы типа стеллитов  [c.454]

Приведенные выше данные вполне достаточны для представления об изменении указанных характеристик физических свойств ирн повышении или понижении температуры для включенных в справочник сталей, содержащих никель, хром и другие элементы.  [c.10]

Чувствительность к отпускной хрупкости конструкционных легированных сталей, содержащих никель, хром, марганец, увеличивают такие элементы, как фосфор, мышьяк, сурьма, олово.  [c.14]

Рис. 1. Структура исходного алитированного слоя (увел. 6000), его микротвердость п схематическое распределение в нем никеля, хрома и алюминия. Рис. 1. <a href="/info/546211">Структура исходного</a> алитированного слоя (увел. 6000), его микротвердость п схематическое распределение в нем никеля, хрома и алюминия.
Рис. 4. Структура поверхностного слоя лопатки II ступени после испытания в течение 900 час. (увел. 500), распределение никеля, хрома, железа п алюминия. Рис. 4. <a href="/info/216594">Структура поверхностного</a> слоя лопатки II ступени после испытания в течение 900 час. (увел. 500), распределение никеля, хрома, железа п алюминия.
Углерод Марганец Кремний Никель. Хром. . Железо.  [c.176]

К чу1 унам относятся сплавы железа с углеродом, содержание которого превышает 2,11% (2,14%). В отих сплавах обычно присутствует так/ке кремний и некоторые количества марганца, серы н фосфора, а иногда и другие элементы, вводилнле как легирующие добапк и для гсрндания чугуну определенных свойств. К числу таких легирующих эле.ментоп можно отнести никель, хром, магний и др.  [c.321]

Для предохранения крепежных деталей от коррозии применяются соответствующие защитные покрытия. ГОСТ 1759-70 устанавливает следующие условные обозначения покрытий цинковое покрытие с хроматированием-01 кадмиевое с хромати-рованием-02 многослойное (медь-никель)-03 многослойное (медь-никель-хром) -04 окисное-05 фосфатное с промасливанием-06 оловянное-07 медное-08 цинковое-09 окисное анодизационное с хроматированием-10 пассивное -11 серебряное-12. Детали, выполняемые без покрытия, характеризуются индексом 00  [c.165]

В окислительных и восстановительных реакциях могут применяться относительно дешевые окисные катализаторы на основе меди, марганца, никеля, хрома и т. д. (СиО, МпОг, N 0, СГ2О3, РегОз, ZnO). Однако эти катализаторы менее долговечны, их эффективность значительно ниже, чем у платино-палладиевых. Поэтому, несмотря на высокую стоимость, чаще всего используют катализаторы на основе благородных металлов. В США, например, на эти цели ежегодно расходуется около 40000 кг платины [13].  [c.65]

При решении вопроса о допустимости контакта между металлами можно также руководствоваться следующими данными. Все металлы разделены на пять групп первая группа магний вторая — п,ипк, алюминий, кадмий третья — железо, углеродистые стали, свинец, олово четвертая — никель, хром, хромистые стали (Х17), хромопикелевые стали (Х18Н9) пятая — медноникелевые сплавы, медь, серебро.  [c.182]

Л63, ЛС59—1 ГОСТ 15527-70 Без покрытия Никелевое Многослойное— никель-хром Оловянное Пассивное  [c.247]

При введении в никель хрома он приобретает стойкость в окислителях (в частности, HNO3 и Н2СГО4). Определенное по измерениям критической плотности тока минимальное массовое содержание хрома, необходимое для анодной пассивации сплава в серной кислоте, составляет 14 % [3]. Однако сплавы с хромом более чувствительны к воздействию С1 и НС1. В неподвижной морской воде на них образуются более глубокие питтинги. Хром повышает также стойкость никеля к окислению при повышенных температурах. Широкое применение нашел сплав, содержащий 20 % Сг и 80 % Ni (см. разд. Ю.11.3).  [c.361]

Удельное объемное сопротивление р жидких диэлектриков определяют на образдах (пробах) объемом не менее 50 см , число проб — не менее двух. Испытуемую жидкость заливают в измерительную ячейку — специальный металлический сосуд с электродами, которые обычно изготовляются из нержавеющей стали. Рабочие поверхности электродов должны иметь покрытие из никеля, хрома или серебра с гладкой поверхностью. Измерительная ячейка представляет собой трехэлектродную систему. При плоских электродах (рис. 1-10, а) высоковольтный электрод 5 выполняется в виде тарелки с плоским дном. На бортики этого электрода опирается изоляционный элемент 4 кольцевой формы. Изоляционный элемент выполняется из плавленого кварца или фторопласта-4. На нем закреплен винтами охранный кольцевой электрод 2. Во внутреннюю выточку охранного электрода входит изоляционное кольцо 5, несущее центральный измерительный электрод /. Все электроды снабжены зажимами 5 для соединения с измерительной цепью.  [c.26]

Легирование никеля медью несколько повьпиает его коррозионную стойкость. Сплавы никеля, содержащие 30% меди (например, монель-металл никель - основа, 27.. 29% меди, 2...3% железа, 1.2... 1.8% марганца), обладаюг высокой коррозионной стойкостью в пресной и морской воде, растворах серной (до 20%), плавиковой и ортофосфорной кислот. Легирование никеля хромом заметно повышает стойкость в окисл1ггельных средах, однако увеличивается чувствительность к воздействию анионов хлора. Совместное легирование никеля хромом и молибденом повышает устойчивость сплавов в окислительных и восстановительных средах.  [c.17]

Высокая нагревостойкость таких элементов объясняется введением в их состав достаточно больпшх количеств металлов, образующих при нагреве на воздухе практически сплошную оксидн)чо пленку. Такими металлами являются в основном никель, хром и алюминий. Железо, как уже отмечалось, при нагреве легко окисляется чем больше содержание железа в сплаве, например, с и Сг, тем менее нагревостоек ( жаростоек ) этот сплав.  [c.37]

Для изготовления мощных контактов применяют следующие системы из тугоплавких и электропроводных металлов, не сплавляющихся между собой 1) серебро с кобальтом, никелем, хромом, молибденом, вольфрамом, танталом, 2) медь с фольфрамом и молибденом, 3) золото с вольфрамом и молибденом. Бинарные и более сложные композиции содержат в основном указанные композиции металлов. В некоторых случаях состав сплавов усложняется специальными примесями, но принцип выбора основных компонентов для композиций соблюдается всегда. Вследствие несплавляемости компонентов композиции готовят спеканием смеси металлических порошков и пропиткой компонента В расплавленным компонентом Л. В результате получается смесь компонентов А и В, причем стремятся, чтобы оба компонента представляли собой непрерывно взаимно- переплетающиеся скелетные структуры. При такой микроструктуре и при правильно подобранных гранулометрических составах порошков достигается наиболее выгодное сочетание электропроводности и термической устойчивости композиций.  [c.253]

Хромель-алюмелевая термопара. В [27] предлагается другое название этой термопары никель-хром-никель-алю-миниевая. Одним электродом этой термопары является немагнитный сплав хромель Т (89% Ni-j-9,8% Сг-(-1,0% Fe-)-0,2% Mn), а другим — магнитный сплав алюмель (94% Ni+2% А1+2,5% Мп+1% Si+0,5 примеси). Эта термопара может быть использована для измерения температур в интервале от —200 до 1000 °С, а кратковременно — до 1300 °С. Необходимо помнить, что верхний предел измерения, указанный здесь, соответствует большому диаметру электродов (3,2 мм), которые в лабораториях практически не используются. Для термопары, изготовленной из более тонкой проволоки, верхний предел измерений должен быть снижен. Градуировка хромель-алюмелевой термопары приведена в табл. 3.4 по данным [28].  [c.87]

В этом генераторе электроды выполнены из керамики 2г02 с различными добавками, а изоляторы из окиси магния М 0. В ряде МГД-генераторов используются электроды из меди и высокотемпературных сплавов на основе никеля, хрома и вольфрама, а также порошковых материалов на основе хромитов. В качестве материала для изоляторов часто применяется окись алюминия А12О3.  [c.289]

Сплавы на основе железа. Эти сплавы в основном применяются для электронагревательных элементов. Высокая нагревостойкость таких элементов объясняется введением в их состав достаточно больпшх количеств металлов, имеющих высокое значение объемного коэффициента оксидации К (стр. 183), потому при нагреве на воздухе образующих практически сплошную оксидную пленку. Такими металлами являются никель, хром и алюминий. Железо, как уже отмечалось выше, имеет объемный коэффициент оксидации меньше единицы и потому при нагреве легко окисляется (см. рис. 7-10) чем больше содержание железа в сплаве, например, с Ni и Сг, тем менее нагревостоек этот сплав.  [c.220]

Якоб и Линке, хромированная плита, чистая, длительное кипение 2 — Чикеллн и Бонила, хромированная плита, незначительный налет 3—S — Кольчугин и др., нержавеющая сталь, никель, хром, серебро соответственно, горизонтальные трубы > = =5 мм, чистые 7—8- Борншанский и др., нержавеющая сталь и латунь соответственно, горизонтальные трубы В—4- б mmj S —Мннченко, латунная труба, i3-9 мм /( — Кутателадзе, графитовый стержень, D=2 мм II—Мак Адамс, медная труба, D-13 мм  [c.117]

Якоб и Линке, хромированная плнта, чистая, длительное кипение 2 — Чикелли и Бонилла, хромированная плита, незначительный налет Л—6 — Кольчугин и др., нержавеющая сталь, никель, хром, серебро соответственно, горизонтальные трубы D = 5 мм, чистые 7,8 — Боришаиекий н др., нержавеющая сталь и латунь соответственно, горизонтальные трубы D =  [c.126]

Рис. 5. Кривые распределения алюминия, никеля, хрома и желе а в алитированном образце стали ЭИ696М. а — температура образца 960 С, б — 1150 С. Рис. 5. <a href="/info/5915">Кривые распределения</a> алюминия, никеля, хрома и желе а в алитированном образце стали ЭИ696М. а — температура образца 960 С, б — 1150 С.
На рис. 5, а и б представлена типичная кривая изменения концентрации алюминия, а также никеля, хрома и железа (качественная картина) по глубине алитированного слоя для двух режимов алитирования (температура 960 и 1150° С, время 10 час.). Одновременно приводится микротвердость исследуемой зоны. При уменьшении нродолнштельности алитирования распределение алюминия, никеля, хрома и железа аналогично приведенному на рис. 5, а и б. Ход концентрационной кривой позволяет выделить несколько зон, которые по своим линейным размерам совпадают с размерами зон, определенными с помощью мета.л-лографического анализа. Таким образом, по роду кривых можно определить концентрацию компонентов алитированной стали в любом участке исследуемого слоя. Так, концентрация А1, составляя на внешней поверхности 45—50%, резко падает с глубиной до 5—6%. Из графиков видно, что в процессе алитирования происходит перераспределение легирующих элементов. Концентрация никеля по мере приближения к поверхности возрастает, тогда как хрома и железа — падает. Такое пере-, распределение элементов можно, по-видимому, объяснить тем, что термодинамически более выгодно образование алюминидов никеля, а не алюминидов хрома и железа. При этом никель как бы вытягивается на поверхность алюминием.  [c.191]

Работа проводилась в направлении изменения стеклосвязки и введения различных металлических наполнителей. Была опробована серия щелочных, бесщелочных и малощелочных стеклообразных связок (см. таблицу) в сочетании с порошками никеля, хрома, нихрома, железа, алюминия, кремния. Шихты готовились из мелкодисперсных порошков металла и эмали (связки), проходящих через сито 10 000 отв/см . Покрытия наносились на стальные образцы (Ст. 3) методом эмалирования в атмосфере аргона при различных температурах.  [c.253]

mash-xxl.info


Смотрите также