• Главная

Большая Энциклопедия Нефти и Газа. Формула шестивалентный хром


Шестивалентный хром - Material DB - RoHS

Внешний вид простого веществаСвойства атомаНазвание, символ, номерАтомная масса (молярная масса)Электронная конфигурацияРадиус атомаХимические свойстваКовалентный радиусРадиус ионаЭлектроотрицательностьЭлектродный потенциалСтепени окисленияЭнергия ионизации (первый электрон)Термодинамические свойства простого вещества
Плотность (при н. у.)Температура плавленияТемпература кипенияУд. теплота плавленияУд. теплота испаренияМолярная теплоёмкостьМолярный объёмКристаллическая решётка простого веществаСтруктура решёткиПараметры решёткиТемпература ДебаяПрочие характеристикиТеплопроводностьНомер CAS
Твёрдый металл голубовато-белого цвета

Хром / Chromium (Cr), 24

51,9961(6)[1] а. е. м. (г/моль)

[Ar] 3d5 4s1

130 пм

118 пм

(+6e)52 (+3e)63 пм

1,66 (шкала Полинга)

-0.74

6, 3, 2, 0

 652,4 (6,76) кДж/моль (эВ)

7,19 г/см³

2130 K

2945 K

21 кДж/моль

342 кДж/моль

23,3[2] Дж/(K·моль)

7,23 см³/моль

кубическая объёмноцентрированая

2,885 Å

460 K

(300 K) 93,9 Вт/(м·К)

7440-47-3

Хром — элемент побочной подгруппы 6-й группы 4-го периода периодической системы химических элементов Д. И. Менделеева с атомным номером 24. Обозначается символом Cr (лат. Chromium). Простое вещество хром — твёрдый металл голубовато-белого цвета. Хром иногда относят к чёрным металлам.

История

Открыт на Среднем Урале, в Березовском золоторудном месторождении. Впервые упоминается в труде М. В. Ломоносова «Первые основания металлургии» (1763 год), как красная свинцовая руда, PbCrO4. Современное название — крокоит. В 1797 французский химик Л. Н. Воклен выделил из него новый тугоплавкий металл (скорее всего, Воклен получил карбид хрома).

Происхождение названия

Название элемент получил от греч. χρῶμα — цвет, краска — из-за разнообразия окраски своих соединений.

Нахождение в природе

Хром является довольно распространённым элементом (0,02 масс. долей, %). Основные соединения хрома — хромистый железняк (хромит) FeO·Cr2O3. Вторым по значимости минералом является крокоит PbCrO4.

Месторождения

Самые большие месторождения хрома находятся в ЮАР (1 место в мире), Казахстане, России, Зимбабве, Мадагаскаре. Также есть месторождения на территории Турции, Индии, Армении[3], Бразилии, на Филиппинах[4].

Главные месторождения хромовых руд в РФ известны на Урале (Донские и Сарановское).

Разведанные запасы в Казахстане составляют свыше 350 миллионов тонн (2 место в мире)[4].

Геохимия и минералогия

Среднее содержание хрома в различных изверженных породах резко непостоянно. В ультраосновных породах (перидотитах) оно достигает 2 кг/т, в основных породах (базальтах и др.) — 200 г/т, а в гранитах десятки г/т. Кларк хрома в земной коре 83 г/т. Он является типичным литофильным элементом и почти весь заключен в минералах типа хромшпинелидов. Хром вместе с железом, титаном, никелем, ванадием и марганцем составляют одно геохимическое семейство.

Различают три основных минерала хрома: магнохромит (Mg, Fe)Cr2O4, хромпикотит (Mg, Fe)(Cr, Al)2O4 и алюмохромит (Fe, Mg)(Cr, Al)2O4. По внешнему виду они неразличимы, и их неточно называют «хромиты». Состав их изменчив:

  • Cr2O3 18—62 %,
  • FeO 1—18 %,
  • MgO 5—16 %,
  • Al2O3 0,2 — 0,4 (до 33 %),
  • Fe2O3 2 — 30 %,
  • примеси TiO2 до 2 %,
  • V2O5 до 0,2 %,
  • ZnO до 5 %,
  • MnO до 1 %; присутствуют также Co, Ni и др.

Собственно, хромит, то есть FeCr2O4 сравнительно редок. Помимо различных хромитов, хром входит в состав ряда других минералов — хромовой слюды (фуксита), хромового хлорита, хромвезувиана, хромдиопсида, хромтурмалина, хромового граната (уваровита) и др., которые нередко сопровождают руды, но сами промышленного значения не имеют. В экзогенных условиях хром, как и железо, мигрирует в виде взвесей и может накапливаться в глинах. Наиболее подвижной формой являются хроматы.

Получение

Хром встречается в природе в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом):

Fe(CrO2)2+4C→Fe+2Cr+4CO{\displaystyle {\mathsf {Fe(CrO_{2})_{2}+4C\rightarrow Fe+2Cr+4CO}}}

Феррохром применяют для производства легированных сталей.

Чтобы получить чистый хром, реакцию ведут следующим образом:

1) сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе:

4Fe(CrO2)2+8Na2CO3+7O2→8Na2CrO4+2Fe2O3+8CO2{\displaystyle {\mathsf {4Fe(CrO_{2})_{2}+8Na_{2}CO_{3}+7O_{2}\rightarrow 8Na_{2}CrO_{4}+2Fe_{2}O_{3}+8CO_{2}}}}

2) растворяют хромат натрия и отделяют его от оксида железа;

3) переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат;

4) получают чистый оксид хрома восстановлением дихромата натрия углём:

Na2Cr2O7+2C→Cr2O3+Na2CO3+CO{\displaystyle {\mathsf {Na_{2}Cr_{2}O_{7}+2C\rightarrow Cr_{2}O_{3}+Na_{2}CO_{3}+CO}}}

5) с помощью алюминотермии получают металлический хром:

Cr2O3+2Al→Al2O3+2Cr+130kcal{\displaystyle {\mathsf {Cr_{2}O_{3}+2Al\rightarrow Al_{2}O_{3}+2Cr+130kcal}}}

6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты. При этом на катодах совершаются в основном 3 процесса:

  • восстановление шестивалентного хрома до трехвалентного с переходом его в раствор;
  • разряд ионов водорода с выделением газообразного водорода;
  • разряд ионов, содержащих шестивалентный хром, с осаждением металлического хрома;
Cr2O72−+14H++12e−→2Cr+7h3O{\displaystyle {\mathsf {Cr_{2}O_{7}^{2-}+14H^{+}+12e^{-}\rightarrow 2Cr+7H_{2}O}}}

Физические свойства

В свободном виде — голубовато-белый металл с кубической объемно-центрированной решеткой, а = 0,28845 нм. Ниже температуры 38 °C является антиферромагнетиком, выше переходит в парамагнитное состояние (точка Нееля).

Хром имеет твердость по шкале Мооса 5[5], один из самых твердых чистых металлов (уступает только иридию, бериллию, вольфраму и урану). Очень чистый хром достаточно хорошо поддаётся механической обработке.

Химические свойства

Характерные степени окисления

Для хрома характерны степени окисления +2, +3 и +6. (см. табл.) Практически все соединения хрома окрашены[6].

Степень окисления Оксид Гидроксид Характер Преобладающие формы в растворах Примечания
+2 CrO (чёрный) Cr(OH)2(желтый) Основный Cr2+ (соли голубого цвета) Очень сильный восстановитель
+3 Cr2O3(зелёный) Cr(OH)3(серо-зеленый) Амфотерный Cr3+ (зеленые или лиловые соли)

[Cr(OH)4]-(зелёный)

+4 CrO2 не существует Несолеобразующий - Встречается редко, малохарактерна
+6 CrO3(красный) h3CrO4

h3Cr2O7

Кислотный CrO42- (хроматы, желтые)

Cr2O72-(дихроматы, оранжевые)

Переход зависит от рН среды. Сильнейший окислитель, гигроскопичен, очень ядовит.

Простое вещество

Устойчив на воздухе за счёт пассивирования. По этой же причине не реагирует с серной и азотной кислотами. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr2O3, обладающего амфотерными свойствами.

Синтезированы соединения хрома с бором (бориды Cr2B, CrB, Cr3B4, CrB2, CrB4 и Cr5B3), с углеродом (карбиды Cr23C6, Cr7C3 и Cr3C2), c кремнием (силициды Cr3Si, Cr5Si3 и CrSi) и азотом (нитриды CrN и Cr2N).

Соединения Cr(+2)

Степени окисления +2 соответствует основный оксид CrO (чёрный). Соли Cr2+ (растворы голубого цвета) получаются при восстановлении солей Cr3+ или дихроматов цинком в кислой среде («водородом в момент выделения»):

2Cr3+→Zn,HCl[H]2Cr2+{\displaystyle {\mathsf {2Cr^{3+}{\xrightarrow[{Zn,HCl}]{[H]}}2Cr^{2+}}}}

Все эти соли Cr2+ — сильные восстановители вплоть до того, что при стоянии вытесняют водород из воды[7]. Кислородом воздуха, особенно в кислой среде, Cr2+ окисляется, в результате чего голубой раствор быстро зеленеет.

Коричневый или жёлтый гидроксид Cr(OH)2 осаждается при добавлении щелочей к растворам солей хрома(II).

Синтезированы дигалогениды хрома CrF2, CrCl2, CrBr2 и CrI2

Соединения Cr(+3)

Степени окисления +3 соответствует амфотерный оксид Cr2O3 и гидроксид Cr(OH)3 (оба — зелёного цвета). Это — наиболее устойчивая степень окисления хрома. Соединения хрома в этой степени окисления имеют цвет от грязно-лилового (ион [Cr(h3O)6]3+) до зелёного (в координационной сфере присутствуют анионы).

Cr3+ склонен к образованию двойных сульфатов вида MICr(SO4)2·12h3O (квасцов)

Гидроксид хрома (III) получают, действуя аммиаком на растворы солей хрома (III):

Cr3++3Nh4+3h3O→Cr(OH)3↓+3Nh5+{\displaystyle {\mathsf {Cr^{3+}+3NH_{3}+3H_{2}O\rightarrow Cr(OH)_{3}\downarrow +3NH_{4}^{+}}}}

Можно использовать растворы щелочей, но в их избытке образуется растворимый гидроксокомплекс:

Cr3++3OH−→Cr(OH)3↓{\displaystyle {\mathsf {Cr^{3+}+3OH^{-}\rightarrow Cr(OH)_{3}\downarrow }}} Cr(OH)3+3OH−→[Cr(OH)6]3−{\displaystyle {\mathsf {Cr(OH)_{3}+3OH^{-}\rightarrow [Cr(OH)_{6}]^{3-}}}}

Сплавляя Cr2O3 со щелочами, получают хромиты:

Cr2O3+2NaOH→2NaCrO2+h3O{\displaystyle {\mathsf {Cr_{2}O_{3}+2NaOH\rightarrow 2NaCrO_{2}+H_{2}O}}}

Непрокаленный оксид хрома(III) растворяется в щелочных растворах и в кислотах:

Cr2O3+6HCl→2CrCl3+3h3O{\displaystyle {\mathsf {Cr_{2}O_{3}+6HCl\rightarrow 2CrCl_{3}+3H_{2}O}}}

При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):

2Na3[Cr(OH)6]+3h3O2→2Na2CrO4+2NaOH+8h3O{\displaystyle {\mathsf {2Na_{3}[Cr(OH)_{6}]+3H_{2}O_{2}\rightarrow 2Na_{2}CrO_{4}+2NaOH+8H_{2}O}}}

То же самое происходит при сплавлении оксида хрома (III) со щелочью и окислителями, или со щелочью на воздухе (расплав при этом приобретает жёлтую окраску):

2Cr2O3+8NaOH+3O2→4Na2CrO4+4h3O{\displaystyle {\mathsf {2Cr_{2}O_{3}+8NaOH+3O_{2}\rightarrow 4Na_{2}CrO_{4}+4H_{2}O}}}

Соединения хрома (+4)

При осторожном разложении оксида хрома(VI) CrO3 в гидротермальных условиях получают оксид хрома(IV) CrO2, который является ферромагнетиком и обладает металлической проводимостью.

Среди тетрагалогенидов хрома устойчив CrF4, тетрахлорид хрома CrCl4 существует только в парах.

Соединения хрома (+6)

Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO3 и целый ряд кислот, между которыми существует равновесие. Простейшие из них — хромовая h3CrO4 и двухромовая h3Cr2O7. Они образуют два ряда солей: желтые хроматы и оранжевые дихроматы соответственно.

Оксид хрома (VI) CrO3 образуется при взаимодействии концентрированной серной кислоты с растворами дихроматов. Типичный кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовую h3CrO4, дихромовую h3Cr2O7 и другие изополикислоты с общей формулой h3CrnO3n+1. Увеличение степени полимеризации происходит с уменьшением рН, то есть увеличением кислотности:

2CrO42−+2H+→Cr2O72−+h3O{\displaystyle {\mathsf {2CrO_{4}^{2-}+2H^{+}\rightarrow Cr_{2}O_{7}^{2-}+H_{2}O}}}

Но если к оранжевому раствору K2Cr2O7 прилить раствор щёлочи, как окраска вновь переходит в жёлтую, так как снова образуется хромат K2CrO4:

Cr2O72−+2OH−→2CrO42−+h3O{\displaystyle {\mathsf {Cr_{2}O_{7}^{2-}+2OH^{-}\rightarrow 2CrO_{4}^{2-}+H_{2}O}}}

До высокой степени полимеризации, как это происходит у вольфрама и молибдена, не доходит, так как полихромовая кислота распадается на оксид хрома(VI) и воду:

h3CrnO3n+1→h3O+nCrO3{\displaystyle {\mathsf {H_{2}Cr_{n}O_{3n+1}\rightarrow H_{2}O+nCrO_{3}}}}

Растворимость хроматов примерно соответствует растворимости сульфатов. В частности, жёлтый хромат бария BaCrO4 выпадает при добавлении солей бария как к растворам хроматов, так и к растворам дихроматов:

Ba2++CrO42−→BaCrO4↓{\displaystyle {\mathsf {Ba^{2+}+CrO_{4}^{2-}\rightarrow BaCrO_{4}\downarrow }}} 2Ba2++Cr2O72−+h3O→2BaCrO4↓+2H+{\displaystyle {\mathsf {2Ba^{2+}+Cr_{2}O_{7}^{2-}+H_{2}O\rightarrow 2BaCrO_{4}\downarrow +2H^{+}}}}

Образование кроваво-красного малорастворимого хромата серебра используют для обнаружения серебра в сплавах при помощи пробирной кислоты.

Известны пентафторид хрома CrF5 и малоустойчивый гексафторид хрома CrF6. Также получены летучие оксигалогениды хрома CrO2F2 и CrO2Cl2 (хромилхлорид).

Соединения хрома(VI) — сильные окислители, например:

K2Cr2O7+14HCl→2CrCl3+2KCl+3Cl2↑+7h3O{\displaystyle {\mathsf {K_{2}Cr_{2}O_{7}+14HCl\rightarrow 2CrCl_{3}+2KCl+3Cl_{2}\uparrow +7H_{2}O}}}

Добавление к дихроматам перекиси водорода, серной кислоты и органического растворителя (эфира) приводит к образованию синего пероксида хрома CrO5L (L — молекула растворителя), который экстрагируется в органический слой; данная реакция используется как аналитическая.

Применение

Хром — важный компонент во многих легированных сталях (в частности, нержавеющих), а также и в ряде других сплавов. Добавка хрома существенно повышает твердость и коррозийную стойкость сплавов.

Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование).

Хром применяется для производства сплавов: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности.

Биологическая роль и физиологическое действие

Хром — один из биогенных элементов, постоянно входит в состав тканей растений и животных. У животных хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов. Снижение содержания хрома в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови.

В чистом виде хром довольно токсичен, металлическая пыль хрома раздражает ткани лёгких. Соединения хрома(III) вызывают дерматиты.

Соединения хрома в степени окисления +6 особо токсичны. Практически вся хромовая руда обрабатывается через преобразование в дихромат натрия. В 1985 году было произведено примерно 136 000 тонн шестивалентного хрома.[8] Другими источниками шестивалентного хрома являются триоксид хрома и различные соли — хроматы и дихроматы. Шестивалентный хром используется при производстве нержавеющих сталей, текстильных красок, консервантов для дерева, при хромировании и пр.

Шестивалентный хром является признанным канцерогеном при вдыхании.[9] На многих рабочих местах сотрудники подвержены воздействию шестивалентного хрома, например, при гальваническом хромировании или сварке нержавеющих сталей.[9] В Европейском союзе использование шестивалентного хрома существенно ограничено директивой RoHS.

Шестивалентный хром транспортируется в клетки человеческого организма с помощью сульфатного транспортного механизма благодаря своей близости к сульфатам по структуре и заряду. Трёхвалентный хром, более часто встречающийся, не транспортируется в клетки.

Внутри клетки Cr(VI) восстанавливается до метастабильного пятивалентного хрома (Cr(V)), затем до трехвалентного хрома (Cr(III)). Трехвалентный хром, присоединяясь к протеинам, создает гаптены, которые включают иммунную реакцию. После их появления чувствительность к хрому не пропадает. В этом случае даже контакт с текстильными изделиями, окрашенными хромсодержащими красками или с кожей, обра

cadenas.partcommunity.com

Способ обезвреживания материала, содержащего шестивалентный хром

Изобретение относится к способу мокрого обезвреживания огнеупорного пористого материала, содержащего шестивалентный хром. Способ включает выщелачивание с образованием жидкой и твердой фаз. Выщелачивание проводят в кислой среде в присутствии восстановителя для перевода шестивалентного хрома в растворе в трехвалентный хром. Затем значение pH повышают до значения, при котором образуется твердый гидроксид хрома. При выщелачивании pH доводят до 1-6,5, предпочтительно до около 4. В качестве восстановителя используют восстановитель, содержащий тиосульфатные ионы, или цинк. Полученный материал, обезвреженный этим способом, пригоден для изготовления огнеупорных изделий. Техническим результатом является отсутствие необходимости в повышении температуры и повышение производительности процесса. 2 н. и 16 з.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к способу обезвреживания материала, содержащего шестивалентный хром, при котором материал подвергают выщелачиванию с образованием жидкой и твердой фаз.

Материалы с содержанием шестивалентного хрома способны создавать относительно большие трудности при использовании, в частности, вследствие того, что хром в таком виде является сильно токсичным и очень растворимым в воде.

Такие трудности отмечаются, в частности, в отношении огнеупорных изделий с содержанием хрома, используемых в конструкции печей для стеклянной, цементной, металлургической и др. отраслей промышленности.

В указанных огнеупорах хром присутствует обычно в виде оксида хрома в степени окисления III. В этом виде он нерастворим и считается относительно слабо токсичным. Однако в определенных технологических условиях часть трехвалентного хрома может окисляться и образовывать шестивалентный хром, который, как уже отмечалось выше, является очень растворимым и токсичность которого неоспорима. Наличие шестивалентного хрома в огнеупорных кирпичах некоторыми авторами объясняется сочетанием двух технологических условий: присутствием щелочных и/или щелочноземельных металлов, таких, например, как кальций, калий или натрий, и действием рабочей температуры свыше 600°С. Следовательно, логично, что шестивалентный хром в большом количестве обнаруживают в кирпичах, применяемых в стеклянной, металлургической и химической отраслях промышленности, в которых присутствуют упомянутые условия. Изделие с содержанием шестивалентного хрома не является стойким при температуре свыше 1050°С, однако после охлаждения, в температурном диапазоне 600-1000°С, оно снова приобретает прежние свойства, и именно при комнатной температуре обнаруживают шестивалентный хром.

Вследствие своей токсичности и большой растворимости в воде шестивалентный хром вызывает большую опасность, в частности, в случае возможного выделения. В настоящее время существует неотложная необходимость в наличии решений, позволяющих придать инертные свойства хрому в использованных материалах.

В этом направлении проведены различные исследования и предложены разные способы обработки для решения этой проблемы, среди которых следующие:

- термообработка в восстановительной среде (как правило, в среде кокса) предварительно дробленого материала, при которой содержание шестивалентного хрома может снизиться в результате обжига при температуре свыше 1050°С, и последующее охлаждение в вакууме или в атмосфере восстановительного газа;

- пирометаллургический способ, при котором загрязненные сырьевые материалы смешивают с первичной хромистой рудой, называемой хромитом; после этого смесь плавят и восстанавливают до образования металлического хрома;

- выборочное дробление загрязненных материалов (преимущественно огнеупорных) и попытка отделения шестивалентного хрома в наиболее тонко измельченных фракциях. Многочисленные организации уже располагают способами повторного использования огнеупоров с содержанием магния и хрома, имея при этом конечной целью повторное применение использованных кирпичей при изготовлении новых огнеупоров; для этого проводятся главным образом последовательные операции измельчения, механической и магнитной сортировки для удаления загрязняющих веществ, образовавшихся при использовании кирпичей, содержащих помимо шестивалентного хрома также изделия, контактировавшие с огнеупорами в процессе эксплуатации, как, например, металлы, стекло и пр.,

- биохимическая обработка с применением бактериальных штаммов.

Каждый из приведенных способов страдает серьезными недостатками. Действительно:

- способ, предусматривающий термообработку, не позволяет уменьшить содержание Cr6+ ниже предписанного законодательством предела и, более того, не приводит к удалению содержащихся кальция и щелочных металлов, при этом, если обратиться, например, к промышленности огнеупорных изделий, пассивированные материалы могут повторно применяться в качестве источника вторичного сырья только с риском резкого снижения свойств изделий; помимо своего негативного влияния на огнеупорные свойства кальций и щелочные металлы снижают кинетику окисления Cr3+ в Cr6+, вызывая преждевременное старение огнеупорных изделий из-за присутствия повторно используемых материалов;

- способ плавления требует высоких температур и, следовательно, является низко рентабельным в энергетическом отношении, кроме того, поскольку извлекается один только хром, то образуется большой объем не утилизируемых отходов;

- селективное дробление материалов характеризуется теми же недостатками, что и термообработка, только более выраженными;

- биохимическая обработка применима только при низких концентрациях хрома, так как в противном случае имеется опасность гибели штаммов микроорганизмов, и, кроме того, ей присуща низкая кинетика восстановления и малая эффективность, что, в конечном счете, позволяет ее применять только для обезвреживания почвы по месту, для чего другие способы оказываются непригодными.

Все способы, которым до настоящего времени уделялось наибольшее внимание, в целом основаны на одном и том же принципе, а именно, на выщелачивании загрязненных веществ. Речь идет о промывке таких веществ, в результате которой получают, с одной стороны, твердый остаток, в котором содержание шестивалентного хрома чрезвычайно низкое или практически отсутствует, и, с другой стороны, раствор с содержанием хроматов. После такой промывки необходима, разумеется, дополнительная обработка полученного раствора, содержащего шестивалентный хром.

Целью изобретения является устранение приведенных выше недостатков и создание способа восстановления шестивалентного хрома, характеризующегося следующими преимуществами:

- отсутствие необходимости в повышении температуры растворов, за счет чего достигается существенный энергетический выигрыш по сравнению с приемами, применяемыми при восстановительном или пирометаллургическом обжиге;

- общая производительность, начиная от подготовки подлежащих обработке загрязненных материалов и кончая их приведением в состояние повторного применения, существенно выше производительность известных способов и составляет около 100% даже в случаях очень высокой концентрации шестивалентного хрома, составляющей, например, 575 ч./млн, что позволяет соблюдать предельные значения, предписанные действующим законодательством;

- одновременно существенно снижаются соотношения жидкость / твердое вещество в выщелачивающем растворе и время контактирования между раствором на основе хрома и восстановителем, например, до 30 минут без существенного уменьшения производительности;

- широкий диапазон значений pH, в котором достигается полное восстановление шестивалентного хрома;

- возможность применения слабых кислот, таких, как уксусная, без снижения эффективности обработки;

- большой потенциал восстановления по сравнению, в частности, с другими восстановителями, такими, как сульфат железа, учитывая изменение уровня окисления.

В частности, изобретение касается способа, который благодаря своей очень высокой производительности и применению меньшего количества последовательных, очень легко осуществляемых операций, представляет чрезвычайно большой интерес с технической и экономической точек зрения по сравнению с известными способами.

Кроме того, речь идет о способе, который может быть применен для самых разных, загрязненных щестивалентным хромом материалов.

Для этого, согласно изобретению, выщелачивание проводят в кислой среде в присутствии восстановителя таким образом, чтобы шестивалентный хром можно было перевести в растворе в трехвалентный хром, и затем значение pH повышают до значения, при котором образуется твердый гидроксид хрома.

Предпочтительно во время выщелачивания pH довести до 1-6,5, преимущественно до около 4.

Согласно оптимальному варианту осуществления в качестве восстановителя применяют остаток отработанных фотографических закрепляющих растворов, содержащий тиосульфатные ионы.

Применение отработанных закрепляющих растворов в виде раствора или суспензии вызывает большой интерес, учитывая, что такие растворы представляют собой отходы, переработка которых обычно является очень дорогостоящей.

В особо оптимальном варианте способа коагулянт добавляют в гидроксид трехвалентного хрома и затем фильтраций отделяют, с одной стороны, твердую фазу с содержанием гидроксида трехвалентного хрома и, с другой стороны, остаточный раствор с содержанием щелочей.

Очень эффективен вариант осуществления способа в том случае, когда упомянутый выше восстановитель содержит тиосульфаты, и последние добавляют в воду для выщелачивания в виде раствора, приготовленного из отработанного фотографического закрепляющего раствора с содержанием тиосульфата от 4 до 15% мас., причем закрепляющий раствор добавляют в воду для выщелачивания с содержанием шестивалентного хрома от около 1 до 5% мас.

Согласно предпочтительному варианту осуществления при указанном выше выщелачивании используют гранулы с гранулометрическим составом менее 6 мм, предпочтительно менее 4 мм.

Изобретение касается также основного материала для изготовления изделия, в частности, огнеупорного, с помощью описанного выше способа.

Другие подробности и отличительные признаки изобретения приводятся ниже в описании в виде не ограничивающего примера и нескольких отдельных вариантов осуществления способа согласно изобретению со ссылками на приложенные чертежи и с указанием восстановителей самого разного происхождения.

На фиг.1 схематически показаны разные этапы способа с использованием в качестве восстановителя фотографических закрепляющих растворов согласно изобретению;

на фиг.2 схематически показаны разные этапы способа согласно изобретению с использованием в качестве восстановителя цинкового порошка;

на фиг.3 схематически показан другой вариант осуществления способа согласно изобретению, в котором восстановление проводится с применением цинковых пластинок.

В целом способ согласно изобретению, предназначенный для обработки материалов, загрязненных шестивалентным хромом и являющихся преимущественно огнеупорными, состоит в разрушении или дроблении этих материалов и в выщелачивании полученных при этом гранул в кислой водной среде в присутствии восстановителя и в условиях, в которых образуется раствор с содержанием практически всего количества щестивалентного, содержащегося в этих гранулах хрома. Разрушение или дробление могут проводиться либо раздельно сухим или мокрым способом, либо в среде выщелачивающей жидкости. Выбор любого из этих вариантов определяется отчасти видом подлежащих обработке материалов.

Важно, согласно изобретению, чтобы на первом этапе кислотность выщелачивающей жидкости задавалась такой, чтобы трехвалентный хром, полученный в присутствии восстановителя, мог поддерживаться в виде раствора в этой жидкости, и чтобы на втором этапе pH указанной жидкости был увеличен добавкой основания, например, такого, как NaOH, Nh5OH и др., с тем, чтобы после кристаллизации можно было его отделить простыми техническими приемами, которые, как правило, известны сами по себе, например, фильтрацией.

Очень хорошие результаты были достигнуты выделением твердой фазы из выщелачивающего раствора перед повышением pH. Эта мера позволяет, в частности, образовать суспензию из кристаллических частиц гидроксида хрома с по существу одинаковыми размерами, которые проще поддаются отделению, главным образом после добавки коагулянта в выщелачивающую жидкость.

Способ согласно изобретению является очень эффективным при обезвреживании относительно пористых материалов, к которым относятся, как правило, огнеупоры. Большая часть таких материалов, действительно, обладает пористостью порядка 10-20%. Это приводит к тому, что при выщелачивании не подкисленной водой и без присутствия восстановителя выделанная из выщелачивающего раствора твердая фаза будет неизбежно содержать относительно большое количество хрома. Напротив, при одновременном выщелачивании и восстановлении в кислой среде согласно изобретению достигается очень высокая производительность способа, составляющая, как правило, более 99,5%, по сравнению с производительностью известных способов.

Еще одним, немаловажным преимуществом способа согласно изобретению является то, что он не только содержит технически простые операции, каждая из которых обеспечивает достижение высокой производительности, но и что количество последовательных операций, начиная от образования гранул обезвреживаемого материала и кончая получением основного материала, пригодного для использования при изготовлении новых изделий промышленного значения, очень сокращено. Кроме того, каждая операция положительно сказывается на проведении последующих операций.

В случае необходимости можно предусмотреть, разумеется, несколько последовательных операций выщелачивания. Однако было отмечено, что даже при одноразовом выщелачивании материалов с сильным загрязнением шестивалентным хромом удается достигать чрезвычайно высокой производительности, уже упоминавшейся выше.

При подготовке основного материала для изготовления огнеупорных кирпичей часто показано выщелачивать дробленые или измельченные материалы с относительно низким содержанием мелких частиц, максимально исключая при этом использование гранул диаметром более 5 мм.

Изобретение касается также применения отходов, являющихся утилизируемыми материалами, для восстановления шестивалентного хрома.

Эти отходы, используемые в качестве восстановителей и являющиеся, следовательно, утилизируемыми, представляют собой:

- отработанные фотографические закрепляющие растворы с содержанием тиосульфата, как правило, от 4 до 15% мас. от количества раствора или

- порошки с большим содержанием цинка, полученные при проведении способов термической металлизации и содержащие около 85% мас. цинка. В данном случае цинк присутствует в виде порошка со средним гранулометрическим составом (D50), как правило, около 80 мкм. Однако эффективным цинк является и при очень мелком гранулометрическом составе.

Для цинкового порошка не требуется специально проводить активного перемешивания, при этом единственным ограничением является поддержание порошка во взвешенном состоянии для обеспечения однородности среды.

На фиг.1 схематически показаны разные этапы первого варианта осуществления способа согласно изобретению, предусмотренного для обработки использованных огнеупорных материалов с содержанием шестивалентного хрома. В соответствии с этим вариантом огнеупорные материалы подвергают дроблению с добавкой воды до получения фракции гранул с гранулометрическим составом менее 4 мм. Затем эту фракцию обрабатывают выщелачиванием в водной среде, при этом воду добавляют в количестве, достаточном для глубокого извлечения содержащегося в гранулах шестивалентного хрома, и переводят хром в раствор. Кроме того, согласно изобретению выщелачивание проводится в кислой среде в присутствии восстановителя.

Твердую фракцию, состоящую из не содержащих шестивалентный хром гранул, отделяют фильтрацией от выщелачивающей жидкости с содержанием трехвалентного хрома, кальция и щелочей в виде раствора. После сушки и, при необходимости, подготовки, например, дроблением и просеиванием названной твердой фракции, получают шамот, практически не содержащий шестивалентный хром, кальций и щелочи, который может быть повторно использован, например, в огнеупорных изделиях.

Для приготовления упомянутой выше кислой среды в выщелачивающую воду добавляют кислоту и отработанный фотографический закрепляющий раствор. С помощью кислоты pH раствора снижают до значения 1-6,5. Этой кислотой может служить, например, серная или уксусная кислота. Для снижения расхода кислот предпочтительно поддерживать значение pH в диапазоне 4-6,5. При этом было установлено, что эффективность восстановления шестивалентного хрома в трехвалентный хром практически не зависит от pH в указанных пределах.

В выщелачивающую воду добавляют закрепляющий раствор с содержанием 4-15% мас. тиосульфата при соотношении 1/10-2/5, предпочтительно около 1/5. Через около 30 минут, но не более чем через 90 минут, практически все количество шестивалентного хрома восстанавливается в трехвалентный хром в растворе.

После отделения твердой фазы фильтрацией в жидкую фазу добавляют основание, например, гидроксид натрия, для повышения pH до величины 9-10 и образования суспензии с содержанием гидроксида трехвалентного хрома. Затем в суспензию вводят коагулянт, известный среднему специалисту, и фильтруют для отделения содержащего трехвалентный хром кека от воды, в которой присутствуют щелочи и кальций.

На фиг.2 схематически показаны разные этапы в соответствии со вторым вариантом осуществления способа согласно изобретению. Этот вариант отличается от варианта на фиг.1 тем, что в качестве восстановителя применяют металлический порошок с большим содержанием цинка вместо фотографического закрепляющего раствора. Не прореагировавший цинк отделяют от обезвреженной твердой фазы с помощью токов Фуко. Извлеченный при этом цинковый порошок может быть снова использован в качестве восстановителя.

После добавки коагулянта отделяют гидроксид трехвалентного хрома фильтрацией воды, содержащей щелочи.

Применение токов Фуко для отделения повторно используемого цинкового порошка эффективно лишь в том случае, если его гранулометрический состав превышает 5 мм, что характерно для стружек.

Извлеченный металлический цинк может повторно применяться для восстановления шестивалентного хрома.

На фиг.3 в виде схемы представлен вариант осуществления способа согласно изобретению, в котором применены цинковые пластинки вместо закрепляющего раствора или цинкового порошка. Согласно этому варианту осуществления цинковые пластинки погружены в выщелачивающую жидкость с содержанием шестивалентного хрома и разных щелочных металлов и вызывают, следовательно, восстановление шестивалентного хрома в трехвалентный. В эту выщелачивающую жидкость добавляют также кислоту в количестве, достаточном для поддержания образовавшегося трехвалентного хрома в растворе. Этот прием имеет то преимущество, что становится возможным легко отделить не прореагировавший цинк от выщелачиваемых гранул.

В результате сравнения разных, описанных выше вариантов осуществления было установлено, что применение фотографических растворов обеспечивает преимущество, заключающееся в последовательном восстановлении Cr6+ и осаждении гидроксида трехвалентного хрома, что позволяет существенно упростить процесс. Напротив, при восстановлении металлическим порошком, содержащим цинк, после фильтрации гранул этот порошок необходимо извлечь, т.е. удалить в конце процесса способом отделения с помощью токов Фуко. Этот способ имеет более ограниченный характер, т.к. при использовании в промышленном масштабе его оптимальная производительность может достигаться только при условии использования цинковых порошков с более крупным гранулометрическим составом, как правило, более 5 мм.

Как правило, соотношение твердое вещество / жидкость при выщелачивании и размер гранул обезвреживаемых выщелачиваемых материалов оказывают относительно большое влияние на производительность способа.

Производительность на разных этапах способа определяют следующим способом:

Производительность при выщелачивании: определяется соотношением между количеством шестивалентного хрома, измеренного в элюате, и суммарным содержанием шестивалентного хрома в трех элюатах, полученных при трехкратном последовательном выщелачивании в соответствии со стандартом.

Производительность при восстановлении: определяется соотношением между количеством шестивалентного хрома, измеренным в элюате, полученном после восстановления шестивалентного хрома в трехвалентный и после осаждения и фильтрации трехвалентного хрома, и количеством шестивалентного хрома в элюате выщелачивания.

Производительность способа обезвреживания зависит, следовательно, от производительности восстановления, рассчитанного на основе суммарного содержания шестивалентного хрома в трех элюатах, полученных при последовательном трехкратном выщелачивании согласно стандарту.

Под «элюатом» понимается жидкость, образовавшаяся при выщелачивании.

Пример 1

В этом примере речь идет о применении способа обработки использованного огнеупорного материала согласно варианту осуществления на фиг.1. Обрабатываемый материал имел форму параллелепипеда с размерами 200×150×100 мм.

В данном примере тест проводился на пробе сухого материала массой 1000 г.

Подготовка бывшего в употреблении материала:

- сухое дробление с получением фрагментов размером менее 60 мм. Измельчение гранул дробленого материала мокрым дроблением: соотношение материал / вода составило 1/10, средний гранулометрический состав после дробления в течение 1 часа составил D50=200 мкм;

- для проведения анализа эмиссионной спектроскопией с индуцированной плазмой (ICP) содержавшихся в ней веществ была отобрана фракция применявшейся при дроблении жидкости:

Cr6+=575 мг/л,

Na+=941 мг/л,

K+=54 мг/л,

Са2+=32 мг/л,

Mg2+=3 мг/л.

Реакция восстановления шестивалентного хрома:

- добавка фотографического раствора Na2S2O3 (2 моля/л): 1/5 от объема применявшейся при дроблении воды, т.е. 2000 мл,

- добавка серной кислоты для снижения pH до около 3 для обеспечения условий восстановления;

- восстановление в течение 90 минут при перемешивании.

Отделение огнеупорного материала:

- огнеупорный материал без значительного содержания трехвалентного хрома отделяли фильтрацией.

Реакция осаждения трехвалентного хрома:

- pH довели до показателя 10 добавкой NaOH (10 М), оптимального для осаждения гидроксида хрома.

Отделение осадка:

- после добавки коагулянта и фильтрации щелочной суспензии получили осадок гидроксида трехвалентного хрома и раствор с содержанием щелочных металлов и следов не восстановленного шестивалентного хрома: Cr6+=0,15 мг/л.

Таким образом производительность способа в этом примере составила 99,95%.

Пример 2

Данный пример приведен на фиг.2.

Для проведения реакции восстановления шестивалентного хрома, описанной в примере 1, в этом примере использовали в качестве восстановителя вместо тиосульфатных ионов остаток после металлизации, содержавший цинк.

В этом примере тест проводили на пробе сухого материала массой 1000 г.

Подготовка использованного материала: см. пример 1.

Реакция восстановления шестивалентного хрома:

- металлический порошок с содержанием цинка добавили в жидкость для дробления с большим избытком: 400 г на 10 л раствора;

- вращением смесительного устройства цинковые частицы и гранулы поддерживали во взвешенном состоянии;

- добавка серной кислоты для снижения показателя pH до около 3 для создания условий восстановления.

Отделение огнеупорного материала:

- фильтрацией отделили загрязненные гранулы и выделили цинк с помощью токов Фуко.

Реакция осаждения трехвалентного хрома:

- после восстановления с перемешиванием в течение 90 минут pH полученного фильтрацией раствора довели до 10 добавкой NaOH (10 М), этот показатель является оптимальным для осаждения гидроксида хрома.

Раствор содержал щелочные металлы и следы не восстановленного шестивалентного хрома: Cr6+=0,25 мг/л.

Производительность способа в этом примере составила 99,90%.

Пример 3

В этом примере приведен диапазон значений pH, предусмотренный для восстановления шестивалентного хрома. Применение сильно щелочной среды в способе может в действительности обратиться в крупный недостаток, что обусловлено очевидной заинтересованностью в возможности создания щадящих технологических условий.

В целом этот пример содержит те же элементы, что и описанные в примере 1.

В приведенных условиях применили в качестве восстановителя тиосульфат из фотографического раствора, который применили в большом избытке по отношению к стехиометрии.

Собственно на этапе восстановления показатель pH довели до необходимого значения добавкой серной кислоты. Было выбрано два крайних значения pH: 2,5 и 6,5. Во время подкисления раствора зеленоватая окраска, типичная при восстановлении шестивалентного хрома в трехвалентный, появилась при pH менее 7.

После достаточно продолжительного перемешивания раствора, в частности, в течение 90 минут, для исключения всякого влияния кинетики восстановления и после фильтрации твердой фазы, pH с помощью NaOH (10M) установили равным 10, который является эффективным при осаждении гидроксида хрома.

После фильтрации и извлечения нерастворимого гидроксида провели повторный количественный анализ остаточного хрома эмиссионной спектроскопией с индуцированной плазмой (ICP). Результаты обоих тестов на восстановление были получены с помощью растворов, содержавших не более 0,2 мг/л и 0,9 мг/л хрома соответственно при тесте с pH 2,5 и pH 6,5, что соответствует производительности более 99,8%.

Пример 4

Этот пример доказывает, что применение более слабой кислоты, например, уксусной, вместо серной кислоты обеспечивает аналогичные результаты.

В целом в данном примере были использованы элементы, описанные в примере 1.

При проведении теста с применением фотографического закрепляющего раствора содержание хрома в выщелачивающей жидкости было снижено до 2 мг/л против 1,1 мг/л при использовании серной кислоты.

Что же касается металлического порошка с содержанием цинка, то результат оказался еще лучше, так как концентрация хрома составила лишь 0,5 мг/л против 0,25 мг/л при использовании серной кислоты.

Пример 5

Описанные выше тесты были относительно продолжительными, при этом, например, этап восстановления проводился при выдержке в течение 90 минут. В данном примере тест проводили в течение более короткого времени для подтверждения того факта, что химическое восстановление шестивалентного хрома может происходить относительно быстро.

Для этого в примере 4 осуществили способ, при котором, с одной стороны, был использован закрепляющий раствор в качестве восстановителя и, с другой стороны, уксусная кислота, но на этот раз раствор находился в кислой среде всего лишь полчаса вместо 90 минут.

В результате был получен раствор с содержанием 1,1 мг/л шестивалентного хрома, т.е. результат оказался схожим с полученным ранее результатом.

Пример 6

Огнеупорный шамот, полученный в виде твердой фазы при осуществлении способа обезвреживания в примере 1, использовали в качестве нового основного материала для изготовления огнеупорных изделий в виде кирпичей или бетона.

Рецептура огнеупорных материалов, использованная в данном примере, была основана на распределении гранулометрического состава обезвреженных гранул оксида хрома с образованием семи классов: от 0 до 3 мм,

Кирпичи прессовали при максимальном усилии (P=124 МПа), затем обрабатывали при 1550°С.

Бетон формовали разливкой с последующей обработкой при температуре 1550°С.

Материал Вещество Содержание, % мас. Плотность/пористость σс, МПа
Кирпичи Cr2O3 77 3,40/17% 167
0-100 мкм 10
100-250 мкм 11
250-500 мкм 12
500-1000 мкм 15
1000-1500 10
1500-2000 мкм 8
2000-3000 мкм 11
Al2O3 23
Бетон Cr2O3 68 3,8/14% 65
0-100 мкм 20
100-250 мкм 15
250-500 мкм 7
500-1000 мкм 5
1000-1500 5
1500-2000 мкм 5
2000-3000 мкм 10
Al2O3Цемент 302
Al2O3 (71%)
Вода 3

Следовательно, изобретение относится: (а) к способу обработки материалов, загрязненных шестивалентным хромом, в частности, использованных огнеупорных хромистых материалов, согласно которому проводятся выщелачивание и химическое восстановление в кислой среде с применением преимущественно отходов с содержанием либо тиосульфатов, либо цинка в течение относительно короткого времени с достижением совершенно удовлетворительной производительности, и (b) к основному материалу, полученному данным способом для производства огнеупорных изделий, в частности, кирпичей или бетона.

В данном способе в качестве восстановителя применяют преимущественно фотографические закрепляющие растворы с содержанием тиосульфата в количестве 4-15% мас. и металлический порошок, содержащий цинк, образуемый при термической металлизации и характеризующийся средним гранулометрическим составом (D50) 50-500 мкм, предпочтительно около 80 мкм.

В случае применения тиосульфатов изобретение включает в себя последовательное проведение выщелачивания, восстановления и осаждения гидроксида хрома без необходимости предварительного отделения обработанного вещества от выщелачивающей жидкости. Напротив, в случае восстановления металлическим порошком рекомендуется проводить предварительную фильтрацию, при которой:

1) вначале получают элюат и после осаждения - соединение, состоящее в значительной степени из гидроксида трехвалентного хрома,

2) выделяют обработанное вещество и не прореагировавший цинк для его повторного применения в качестве восстановителя.

В качестве кислоты при восстановлении шестивалентного хрома с применением указанного восстановителя может в одинаковой степени применяться сильная кислота, как, например, серная, или слабая кислота, как, например, уксусная. Итак, pH при восстановлении составляет 1-6,5, предпочтительно 4-6,5, при осаждении pH 9-11 получают добавкой основания, например, NaOH.

Выбор варианта осуществления способа согласно изобретению зависит от вида обезвреживаемых материалов и может быть легко определен на основе эксперимента при необходимости в лабораторном масштабе, при этом от среднего специалиста не требуется какой-либо изобретательской деятельности.

Само собой разумеется, что настоящее изобретение не ограничивается разными, описанными выше и представленными на фигурах вариантами осуществления, так как, не выходя за рамки данного изобретения, могут быть предусмотрены и другие варианты.

В отдельных случаях вместо фильтрации могут применяться эквивалентные приемы, такие, как просеивание или улавливание в циклоне. Это же относится и к выбору используемых кислот и восстановителей, которые могут изменяться в зависимости от вида обезвреживаемых материалов.

1. Способ мокрого обезвреживания огнеупорного пористого материала, содержащего шестивалентный хром, включающий выщелачивание с образованием жидкой и твердой фаз, отличающийся тем, что выщелачивание проводят в кислой среде в присутствии восстановителя таким образом, чтобы шестивалентный хром можно было перевести в растворе в трехвалентный хром, а затем значение pH повышают до значения, при котором образуется твердый гидроксид хрома.

2. Способ по п.1, отличающийся тем, что при выщелачивании pH доводят до 1-6,5, предпочтительно до около 4.

3. Способ по п.1 или 2, отличающийся тем, что в качестве восстановителя применяют восстановитель, содержащий тиосульфатные ионы, или цинк.

4. Способ по п.3, отличающийся тем, что в качестве восстановителя применяют остаток отработанного фотографического закрепляющего раствора, содержащего тиосульфатные ионы.

5. Способ по п.3, отличающийся тем, что в качестве восстановителя применяют цинк в виде порошка со средним гранулометрическим составом (D50) 50-500 мкм, предпочтительно 50-150 мкм.

6. Способ по п.3, отличающийся тем, что в качестве восстановителя применяют цинк в виде обломков с гранулометрическим составом (D50) 2-8 мм, предпочтительно 4-6 мм.

7. Способ по п.3, отличающийся тем, что в качестве восстановителя применяют цинк в виде пластинок такого размера, чтобы можно было их погрузить, по меньшей мере, частично в выщелачивающую жидкость и удалять их из нее и твердой фазы обезвреженного материала физическим способом.

8. Способ по п.5 или 6, отличающийся тем, что непрореагировавшие обломки цинка отделяют с помощью токов Фуко.

9. Способ по любому из пп.1 и 2, отличающийся тем, что твердую и жидкую фазы разделяют физическим способом, например фильтрацией, просеиванием, улавливанием в циклоне.

10. Способ по любому из пп.1 и 2, отличающийся тем, что после превращения шестивалентного хрома в трехвалентный в растворе pH жидкой фазы доводят до 8-11, предпочтительно до 9-10.

11. Способ по любому из пп.1 и 2, отличающийся тем, что перед повышением значения pH жидкую фазу отделяют от твердой, образовавшейся при выщелачивании.

12. Способ по любому из пп.1 и 2, отличающийся тем, что в гидроксид трехвалентного хрома добавляют коагулянт, после чего проводят фильтрацию для отделения твердой фазы, содержащей указанный гидроксид, от остаточного раствора, содержащего щелочные металлы.

13. Способ по п.12, отличающийся тем, что в указанный остаточный раствор добавляют хлорид кальция для осаждения сульфата в виде гипса.

14. Способ по любому из пп.1 и 2, отличающийся тем, что указанному выше выщелачиванию подвергают материал в виде гранул с гранулометрическим составом менее 6 мм, предпочтительно менее 4 мм.

15. Способ по любому из пп.1 и 2, отличающийся тем, что материал для обработки подготавливают мокрым дроблением, при необходимости после сухого измельчения.

16. Способ по п.15, отличающийся тем, что дробление проводят в кислой среде в присутствии восстановителя.

17. Способ по любому из пп.1 и 2, отличающийся тем, что указанному выше выщелачиванию подвергают использованный огнеупорный материал, загрязненный шестивалентным хромом.

18. Материал для изготовления огнеупорных изделий, состоящий из твердой фазы, обезвреженной способом по любому из предыдущих пунктов.

www.findpatent.ru

Соединения шестивалентного хрома - Справочник химика 21

    Как уже указывалось, для соединений шестивалентного хрома характерны окислительные свойства, поэтому соли хромовых кислот являются окислителями, причем наиболее сильными в кислой среде. Например  [c.277]

    Окисление соединениями шестивалентного хрома. В лаборатории часто применяют для окисления хромовый ангидрид и хромовую смесь. [c.132]

    ИЗУЧЕНИЕ ПРОЦЕССА ВОССТАНОВЛЕНИЯ СОЕДИНЕНИЙ ШЕСТИВАЛЕНТНОГО ХРОМА В ПРИСУТСТВИИ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ [c.58]

    К окислителям общего значения относятся перманганат калия и другие соли марганцовой кислоты. Перманганат калия применяют для получения а-оксикислот—исходя из кислот предельного ряда, а-гликолей—исходя из непредельных соединений, кислот—исходя из спиртов и т. п. Окисление перманганатом используют для доказательства строения органических соединений, особенно непредель-ных [117]. Другими окислителями также общего значения являются соединения шестивалентного хрома—хромовый ангидрид, хромовая кислота, хлористый хромил и т. п. Хромовая кислота или ее ангидрид также могут быть использованы как с целью получения органических веществ, так и для определения их строения (см. ниже). [c.899]

    Безводные соли двухвалентного хрома окрашены в различные цвета их растворы — голубые соли трехвалентного хрома — зеленые и синефиолетовые, соединения шестивалентного хрома — желтые (хроматы) или оранжевые (бихроматы). [c.321]

    Сг (ОН)з при действии сильных окислителей в щелочной среде переходит в соединения шестивалентного хрома — хроматы, например  [c.323]

    Трехокиси хрома, молибдена и вольфрама. Химический характер гидроокисей. Хромовая и двухромовая кислоты. Хроматы и бихроматы. Окислительные свойства соединений шестивалентного хрома. [c.293]

    При высоких концентрациях хрома в гальваношламах прокаливание осадка при умеренных температурах приводит к образованию растворимых соединений шестивалентного хрома за счет восстановления трехвалентного хрома при разложении углекислых и сернокислых солей щелочных металлов. В работе [75] показано, что из прокаленного при 800 °С шлама, полученного из раствора, содержащего по 20 г/л сульфатов N1, Ре, Си, Zn и Сг, вымывается до 25,0-27,2 мг хромовой кислоты. [c.57]

    В работе [111] показано, что при высоких температурах в присутствии щелочных реагентов из хромсодержащих осадков сточных вод образуются растворимые соединения шестивалентного хрома. Эта технология заложена в основу работы [112]. [c.94]

    Соединения шестивалентного хрома. Известны многочисленные соединения шестивалентного хрома, например трехокись СгОз, хроматы (Сг04) -, бихроматы СггО ) , трихроматы (СгзОю) , тетрахроматы (Сг401з) . В высшей степени окисления хром проявляет неметаллические свойства и благодаря этому входит в состав анионов. [c.342]

    Высокотоксичные соединения шестивалентного хрома содержатся в промывных сточных водах и отработанных технологических растворах, образовавшихся в процессе хромирования, при химической обработке поверхностей стальных изделий (травление, пассирование), при анодировании изделий из алюминия и при проведении других технологических процессов. [c.125]

    Водный раствор серной кислоты и соединения шестивалентного хрома часто используют в качестве травильной жидкости для удаления металлов. Особенно широко такие растворы используют для растворения медных покрытий при изготовлении печатных плат в электронике. Во время травления шестивалентный хром превращается в трехвалентный, а в результате растворения меди в жидкости накапливается сульфат меди. При длительном использовании раствора скорость удаления меди уменьшается вследствие увеличения концентрации меди в растворе и восстановления шестивалентного хрома и к конце концов травильную жидкость приходится заменять свежей. Удаление отработанных травильных растворов представляет собой серьезную проблему, поскольку медь и хром ядовиты. [c.87]

    Этот процесс позволяет извлекать соединения шестивалентного хрома из водных растворов, содержащих соединения трехвалентного хрома и ионы тяжелых металлов и включает следующие стадии  [c.88]

    Предложен [110] хромовый катализатор для окисления окиси углерода, а также для получения метанола, и высших спиртов. Раствор соединения шестивалентного хрома смешивают с растворимой окисью и солью тяжелого металла, гидроокись которого окисляют соединением хрома. Например, сернокислое железо или сернокислый марганец обрабатывают гидратом окиси аммония, и раствор смешивают с хромовой кислотой. Осадок промывают, высушивают и прессуют. [c.287]

    Целью настоящего исследования является окисление органических соединений двухромовой кислотой с последующей ее регенерацией. Такая задача распадается на две отыскание экономического способа регенерации соединений шестивалентного хрома и расширение области применения хромовых соединений как дешевых и технологически удобных окислителей. Соединения r(VI) применяются во многих отраслях народного хозяйства. При их использовании в качестве отходов образуется большое количество соединений Сг(П1) гидроокись Сг(П1) и др. В настоящее время нет хорошего метода регенерации соединений r(VI) из хромсодержащих отходов. Описан способ электрохимического окисления гидроокиси Сг(1П) с целью получения хромового ангидрида, однако он пе нашел применения ввиду необходимости больших капитальных затрат и применения дефицитных материалов [1]. [c.293]

    Запись данных опыта. Написать уравнение реакции, учитывая, что хром переходит в трехвалентное состояние. Составить схему перехода электронов. Что в данной реакции служит восстановителем, а что — окислителем Могут ли цинк и соединение шестивалентного хрома проявлять иную функцию в окисли-тельно восстановительных реакциях, чем в данном опыте Ответ мотивировать. [c.100]

    В качестве химического защитного покрытия для многих металлов применяется также хроматирование. На черных металлах этот процесс непосредственно неосуществим и хроматирование погружением производится только после фосфатирования. Пассивность поверхности металла препятствует формированию хроматной пленки. Для устранения пассивности в состав ванн вводятся добавки активаторов, например С1 . Последние содержат соединение шестивалентного хрома и минеральную кислоту, причем Сг + частично восстанавливается выделяющимся водородом. Пленка содержит смесь окиси хрома, трехокиси хрома и окисла металла. Величина pH раствора зависит от стойкости подлежащего удалению с поверхности окисла металла. [c.157]

    Соединения шестивалентного хрома в кислой среде обладают высокой окислительной активностью и, восстанавливаясь, переходят в соединения Сг " (оранжевая окраска изменяется на зеленую). Раствор К2СГ2О7, содержащий серную кислоту, называется хромовой смесью и является сильным окислителем. При-действии перекиси водорода или перекиси металлов на соединения шестивалентного хрома в кислой среде образуется синяя перекись хрома, неустойчивая в водном растворе, но устойчивая в эфирном растворе. Образование перекиси хрома можно выразить следующим уравнением  [c.294]

    Окисление органических веществ соединениями шестивалентного хрома  [c.902]

    Исследование проводилось на искусственно приготовленных стоках, содержащих соединения шестивалентного хрома. [c.58]

    В ряду гидроокисей хрома различных степеней окисления Сг(ОН)г—Сг(ОН)з—НгСгО закономерно происходит ослабление основных свойств и усиление кислотных. Такое изменение свойств обусловдено увеличением степени окисления и уменьшением ионных радиусов хрома. В этом же ряду последовательно усиливаются окислительные свойства. Если соединения двухвалентного хрома очень сильные восстановители и легко окисляются в трехвалентное состояние, то соединения трехвалентного хрома могут, с одной стороны, проявлять окислительные свойства при действии сильных восстановителей, переходя в соединения хрома (2+). а с другой стороны, сильными окислителями (например, галогенами) могут быть окислены в соединения шестивалентного хрома. [c.343]

    Катализаторы на основе хромита меди пе только самовос-иламеияются, но и образуют при окислении соединения шестивалентного хрома, которые растворимы в воде и сильно отравляют стоки. Эти соединения немедленно дезактивируют бактериальную среду даже нри содержании нескольких долей на миллион. [c.116]

    Дегидрирование изобутана в изобутилен. Эффективные катализаторы для превращения низших алканов в алкены — это окислы металлов VI группы, способные к активированной адсорбции водорода при повышенных температурах. На практике наибольшее распространение получили катализаторы на основе окиси хрома, нанесенной на окись алюминия. Наиболее активна аморфная форма окиси трехвалентного хромаСгаОз, содержащая некоторое количество соединений шестивалентного хрома. Роль окиси алюминия помимо основной функции носителя заключается в тормозящем действии на процесс кристаллизации окислов хрома, приводящий к потере активности катализатора. Кислотная функция окиси алюминия, наличие которой ускоряет реакции изомеризации и крекинга, подавляется добавлением небольших количеств щелочных металлов, в частности окиси калия. В некоторых случаях катализаторы дегидрирования алканов Q—Се промотируются редкоземельными элементами, например NdjOa, уменьшающих период разработки . Катализаторы на основе окиси алюминия неустойчивы к действию влаги, поэтому распространенный прием повышения степени превращения (и селективности) за счет снижения парциального давления углеводо- зодов при разбавлении сырья водяным паром в данном случае неприменим. [c.351]

    Активность алюмохромовых катализаторов зависит от вида и содержания окиси хрома. Наиболее активной модификацией является аморфная форма окиси трехвалентного хрол1а СГ2О3, содержащая некоторые количества соединений шестивалентного хрома СгОд. Аморфная окись хрома в чистом виде уже при 350— 400 °С довольно быстро переходит в существенно менее активную кристаллическую форму а-Сг20з, низкая каталитическая активность которой определяется сравнительно малой ее поверхностью. В присутствии окиси алюминия процесс кристаллизации резко замедляется. [c.136]

    Окрашенными соединениями являются все соли катионов III аналитической группы, образуемые кислотами с окрашенными анионами все соли трехвалентного хрома — зеленые или фиолетовые, соединения шестивалентного хрома (хроматы) — желтые, бихроматы — оранжевого цвета соли никеля — зеленые кобальта — красные соединения марганца двухвалентного — розовые, четырехвалентного — черно-бурые, шестивалентного (манганаты) — зеленые, семивалентного (перманганаты) — красно-фиолетовые. Ацетат железа (III) — коричневочайного цвета, арсенат железа (III) —зеленый, бромид железа (И) — красный, хлорид железа (111) — коричнево-желтый, гексацианоферрат (II) железа — берлинская лазурь и гексацианоферрат (111) железа — турнбулена синь и роданид кобальта — синие роданид железа (111) — красный. [c.242]

    Применение хроматов (главным образом бихромата натрия) составляет в СССР около 2 тыс. т и имеет тенденцию к дальнейшему росту. Хроматы используют как для раздельной обработки буровых растворов, так и для производства хромлигносульфонатов. Хроматы применяются и при невысоких забойных температурах, зачастую до 50° С. При этом в некоторых случаях вместо разжижающего они оказывают загущающее действие, обусловленное коагулирующим влиянием соединений шестивалентного хрома. Подобное действие может быть и при высоких забойных температурах в случае введения избытка хроматов, приводящего к глубокому окислению защитных реагентов и коагуляции избытком добавки, оотавшейся в анионной форме. [c.110]

    Алюмохромфосфатную связку с соединениями шестивалентного хрома можно получить, растворяя СгОз в воде до образования насыщенного раствора. Затем водный раствор (65 %-ную двухромовую кислоту) растворяют в АФС. Алюмохромфосфатную связку с соединениями трехвалентного хрома получают из АХФС с шестивалентным хромом, вводя в нее восстановитель — формалин (39 мл на 100 г 65 % раствора Н2СГ2О7) [105]. [c.75]

    Результаты определения изменения в католите (I секции) содержания железа, а в анолите (II секции)—соединений шестивалентного хрома показали, что скорость регенерации полировочнюго раствора ир г-мерно в два раза выше скорости окисления трехвалентного хрома до шестивалентного. [c.56]

    Патент США, №4014814, 1977 г.К наиболее эффективным и широко используемым в настоящее время ингибиторам коррозии относятся соединения шестивалентного хрома, например хроматы и бихроматы натрия, калия, цинка. Однако эти соединения не совсем удобны из-за своей токсичности. Кроме того они окрашены и не-совместимь с легкоокисляющимися веществами, такими как сероводород, оксиды серы, которые часто присутствуют в воздухе, проходящем через охладительные башни. В последнее время значительно возрос спрос на нетоксичные ингибиторы, не содержащие хроматы. [c.19]

    Патент США, № 4059452, 1977 г. Повышенная антикоррозионная стойкость и хорошая адгезия с лакокрасочным покрытием могут быть достигнуты при обработке поверхности металла раствором для хромирования, включающим 1) соединения шестивалентного хрома 2) одно или более соединений из группы а) неионогенные поверхностно-активные вещества, имеющие общую формулу / 0-( Hj HjOj H (здесь R - группа предельных или непредельных алифатических углеводородов, содержащая 5—25 атомов углерода п — целое число между 2 и 30) б) глицин. Желательно также, чтобы раствор содержал мочевину. [c.212]

    Главными компонентами хроматных покрытий являются соединения трех- и шестивалентного хрома и хроматы металла-основы. Тонкие (светлые) покрытия состоят преимущественно из соединений трехвалентного хрома, в то время как толстые (желтые) слои содержат одновременно соединенияСг (III) иСг (VI). Соединения шестивалентного хрома легче растворяются в водных растворах, именно поэтому твердость и коррозионная стойкость покрытия определяется наличием соединений трехвалентного хрома. Для получения покрытий повышенной твердости нрово-. дится дополнительная операция ( осветление ), заключающаяся в том, что предметы с цинковой или кадмиевой поверхностью погружают на 5—10 с в 2%-ный раствор едкого натра. [c.188]

    Существует большое число методов приготовления окиснохромового катализатора, однако во всех случаях в состав его входят соединения шестивалентного хрома. Наиболее активные катализаторы получаются при применении в качестве носителей силикагеля и.ди алюмосиликатов с низким (до 10%) содержанием Al O.-i. В качестве носителей предложены также окислы А1, Th, Zr, Ti, Ge, но катализаторы на этих носителях ма.ло-активны и не находят промыи1ленного нрименения. Носитель для приготовления активных О. к. иолимеризации должен обладать невысокой прочностью, чтобы катализатор легко дробился в процессе полимеризации. Дробление приводит к уве.личению работающей поверхности катализатора. Для того чтобы получит , катализатор невысокой прочности, целесообразно использовать носители с большим об ьемом пор силикагели и алюмосиликаты с объемом пор не менее 1 с,и /г и с уд. поверхностью >300. к-/г. Оптимальный состав, тии носителя и способ ириготовлепия окиснохромового ката- дизатора полимеризации этилена связаны с условиями его нрименения. Однако во всех случаях можно выделить основные стадии приготовления катализатора  [c.222]

    Максимальное окислительное число 6+ отвечает положению этого элемента в периодической таблице (группа Via). Трех- и двухзарядпые ионы похожи на ионы, образуемые другими переходными элементами, например ионом железа(П1) Fe " и железа(П) Fe " . Вполне вероятно, что эти ионы образуются в результате того, что атомы переходных элементов имеют несколько электронов в одной и той же оболочке (3d) два или три из этих электронов легко могут отделяться под действием окислителя, однако большее число электронов отделяться не может, поскольку притяжение иона, обладаюш,его большим зарядом, становится по отношению к электронам слишком большим. (Соединения шестивалентного хрома имеют ковалентные связи, которые частично нейтрализуют положительный заряд атома хрома.) [c.419]

    Изучение процесса восстановления соединений шестивалентного хрома в присутствии ионов тяжелых металлов. Лапаева Е.Е., Перепелкин Р.Н. - В сб. Физико-химичебкие исследования. Тула, ТПИ, 1974, с. 58 - 62. [c.136]

chem21.info

Содержание - шестивалентный хром - Большая Энциклопедия Нефти и Газа, статья, страница 2

Содержание - шестивалентный хром

Cтраница 2

Если вести термическую обработку при температуре выше 550 С или при недостаточной подаче воздуха, то шестивалентный хром полностью восстанавливается в трехвалентный и катализатор теряет активность. Содержание шестивалентного хрома в катализаторе увеличивают, обрабатывая катализатор гидридами щелочных металлов, фтористым водородом или углеводородами при 120 - 130 С.  [16]

Изложенные выше экспериментальные данные указывают, что активность регенерированных алюмохромовых катализаторов зависит не только от их состава и метода приготовления, но и от содержания шестивалентного хрома. Содержание шестивалентного хрома в катализаторе возрастает с увеличением концентрации кислорода в газе, поступающем на регенерацию, и продолжительности окислительной обработки.  [17]

В ходе анализа сначала определяется содержание шестивалентного хрома, а затем Ct переводится Б С Ч путем окисления персульфатом аммония в кислой среде и определяется общее содержание хрома. По разности содержания общего и шестивалентного хрома определяют количество трехвалентного.  [18]

Определить общее содержание хрома в таких водах можно относительно легко. В кислых неокрашенных сточных водах также легко можно определить содержание шестивалентного хрома и по разности найти содержание трехвалентного хрома. Но в нейтральных или щелочных водах раздельное определение шестивалентного и трехвалентного хрома затруднено тем, что при подкислении таких вод, если они ( как это обычно бывает) содержат восстановители-соли двухвалентного железа, сульфиты, многие органические вещества-происходит восстановление шестивалентного хрома до трехвалентного. В водах, окрашенных органическими веществами, нельзя непосредственно колориметрически определять шестивалентный хром и в тех случаях, когда эти воды имеют кислую реакцию.  [19]

Определение общего содержания хрома в таких водах может быть сделано относительно легко. В кислых неокрашенных сточных водах также легко можно определить содержание шестивалентного хрома и по разности найти содержание трехвалентного хрома. Но в нейтральных или щелочных водах раздельное определение шестивалентного и трехвалентного хрома затруднено тем, что при подкислении таких вод, если они ( как это обычно бывает) содержат восстановители - соли двухвалентного железа, сульфиты, многие органические вещества, - происходит восстановление шестивалентного хрома до трехвалентного. В водах, окрашенных органическими веществами, нельзя непосредственно колориметрически определять шестивалентный хром и в тех случаях, когда эти воды имеют кислую реакцию.  [20]

Во многих кислых сточных водах, например в водах от хромирования металлических деталей, содержание шестивалентного хрома может быть определено непосредственно.  [21]

Необходимым условием для получения высокомолекулярного полимера является присутствие шестивалентного хрома. Так, например, обработка окиснохромового катализатора водородом в течение 4 час при 493 с целью восстановления шестивалентного хрома до трехвалентного приводит к образованию неактивного катализатора. Наиболее желателен состав, в котором содержание шестивалентного хрома составляет ыо крайней мере 0 1 % от веса всего катализатора.  [22]

С окисью кремния такого взаимодействия не наблюдается. Активация при высокой температуре требуется лишь для удаления адсорбированной воды. Нагревание катализатора при 650 приводит к дезактивации в результате резкого падения содержания шестивалентного хрома и уменьшения количества химически связанной воды, следствием чего является снижение кислотности алюмосиликата. Содержание шестивалентного хрома также оказывается низким и в том случае, если при активации недостаточно воздуха. При воздействии углеводородов, особенно бензола, катализатор теряет свою активность в результате восстановления шестивалентного хрома, сопровождающегося выделением активного кислорода.  [23]

С окисью кремния такого взаимодействия не наблюдается. Активация при высокой температуре требуется лишь для удаления адсорбированной воды. Нагревание катализатора при 650 приводит к дезактивации в результате резкого падения содержания шестивалентного хрома и уменьшения количества химически связанной воды, следствием чего является снижение кислотности алюмосиликата. Содержание шестивалентного хрома также оказывается низким и в том случае, если при активации недостаточно воздуха. При воздействии углеводородов, особенно бензола, катализатор теряет свою активность в результате восстановления шестивалентного хрома, сопровождающегося выделением активного кислорода.  [24]

Катализатор активируют при температурах от 399 до 816Э в течение; 4 - 15 час паровоздушной смесью, содержащей 3 - 10 % пара. Увеличение температуры активации повышает активность катализатора, которая измеряется степенью превращения мономера в полимер. Если активация катализатора осуществляется на верхнем пределе указанного температурного интервала, например между 704 и 816, то в случае полимеризации пропилена образующийся продукт имеет более низкий средний молекулярный вес и содержит меньше каучукоподобного или твердого полимеров. Температуры активации, соответствующие нижнему пределу, приводят к существенному увеличению доли каучукоподобного и твердого полимеров. С повышением температуры активации уменьшается содержание шестивалентного хрома по отношению к общему его содержанию.  [25]

Катализатор активируют при температурах от 399 до 816 в течение 4 - 15 час паровоздушной смесью, содержащей 3 - 10 % пара. Увеличение температуры активации повышает активность катализатора, которая измеряется степенью превращения мономера в полимер. Если активация катализатора осуществляется на верхнем пределе указанного температурного интервала, например между 704 и 816, то в случае полимеризации пропилена образующийся продукт имеет более низкий средний молекулярный вес и содержит меньше каучукоподобного или твердого полимеров. Температуры активации, соответствующие нижнему пределу, приводят к существенному увеличению доли каучукоподобного и твердого полимеров. С повышением температуры активации уменьшается содержание шестивалентного хрома по отношению к общему его содержанию.  [26]

Страницы:      1    2

www.ngpedia.ru

Определение - шестивалентный хром - Большая Энциклопедия Нефти и Газа, статья, страница 1

Определение - шестивалентный хром

Cтраница 1

Определение шестивалентного хрома основано на окислении им дифенилкарбазида в кислом растворе. Образующееся при этом соединение окрашивает раствор в красно-фиолетовый цвет. Интенсивность образовавшейся окраски сравнивают с интенсивностью окраски стандартного раствора хрома и определяют его содержание.  [1]

При определении шестивалентного хрома результаты могут исказиться из-за окисления хроматом и бихроматом некоторых веществ в интервале времени между взятием пробы и ее анализом. Поэтому хром определяют непосредственно после отбора пробы.  [2]

После охлаждения переносят раствор в мерную колбу емкостью 100 мл, разбавляют дистиллированной водой до метки, перемешивают и дальше продолжают, как при определении шестивалентного хрома, отбирая три порции раствора по 20 мл.  [3]

Железо и молибден не мешают определению, если железо присутствует в количествах не более 1 мг, а молибден-не более 0 8 мг в 10 мл раствора. Марганец не мешает определению шестивалентного хрома. Влияние других катионов на результаты определения хрома не изучено.  [5]

За последние 15 - 20 лет для определения малых количеств хрома, как и других элементов, широкое распространение получили колориметрические методы, особенно с применением органических реагентов. Почти все предложенные методы предусматривают определение шестивалентного хрома и потому колориметрическому определению предшествует окисление хрома.  [6]

Выделившийся иод титруют из микробюретки 0 1 М раствором тиосульфата натрия. Определению не мешает ванадий и молибден, восстанавливающиеся иодом в других условиях кислотности раствора. Четырехвалентный церий, как сильный окислитель, восстанавливается комплексоном почти моментально, так что можно и в его присутствии, гладко проводить определение шестивалентного хрома.  [7]

В качестве термостабилизирующей и ингибирую-щей добавки для сохранения подвижности буровых растворов при высоких забойных температурах используют хро-маты и бихроматы щелочных металлов. Хотя добавки их не превышают десятых долей процента, оценивать содержание токсичного хрома в отходах бурения в некоторых случаях будет необходимо. Хром ( VI) в щелочных растворах чаще всего находится в виде хромат-ионов. В присутствии восстановителей шестивалентный хром может перейти в трехвалентный. Поэтому обычно определяют общее содержание хрома в растворе или твердой фазе в зависимости от цели анализа. В справочной литературе для анализа хрома в воде рекомендуются титриметрический метод определения хрома ( VI) с сульфатом железа ( II) и колориметрический метод определения с дифенилкарбазидом. Этими же методами определяют и общее содержание хрома в пробе. Содержание хрома ( III) устанавливают по разности результатов определения общего и шестивалентного хрома. Этот метод пригоден для анализа наиболее сложных по составу вод. Сущность метода сводится к следующему. Заканчивают анализ фотометрическим определением с дифенилкарбазидом.  [8]

Страницы:      1

www.ngpedia.ru

Окисление органических веществ соединениями шестивалентного хрома

    Окисление органических веществ соединениями шестивалентного хрома  [c.902]

    К окислителям общего значения относятся перманганат калия и другие соли марганцовой кислоты. Перманганат калия применяют для получения а-оксикислот—исходя из кислот предельного ряда, а-гликолей—исходя из непредельных соединений, кислот—исходя из спиртов и т. п. Окисление перманганатом используют для доказательства строения органических соединений, особенно непредель-ных [117]. Другими окислителями также общего значения являются соединения шестивалентного хрома—хромовый ангидрид, хромовая кислота, хлористый хромил и т. п. Хромовая кислота или ее ангидрид также могут быть использованы как с целью получения органических веществ, так и для определения их строения (см. ниже). [c.899]

    Исследования, проведенные в нашей стране, позволили впервые в мировой практике предложить способ биохимической очистки соединений шестивалентного хрома (хроматов и бихроматов), а также хлоратов и перхлоратов. Метод основан на способности специально выведенных микроорганизмов использовать соединения хрома при окислении органических веществ, содержащихся в сточных водах. При этом в нейтральной или слабощелочной среде происходит восстановление ионов шестивалентного хрома до трехвалентного, который осаждается в виде гидроокиси, а хлораты и перхлораты восстанавливаются до практически безвредных хлоридов. Степень очистки достигает 99,4%, остаточное содержание хрома в стоках не превышает 0,4 мг/л. Технологическая схема включает усреднение производст- [c.57]

    Примером очень чувствительной методики определения молибдена может служить индикаторная реакция окисления органического вещества а-нафтиламина бромат-ионом, протекающая с образованием окрашенных продуктов. Этой методикой можно измерить до 5 10 мкг мл молибдена, и она обладает очень большой избирательностью молибден можно определять в присутствии более чем десятикратного избытка шестивалентного хрома, ртути, железа, церия, меди, кобальта, никеля. Соединения вольфрама, элемента очень близкого по своим химическим свойствам к молибдену, тоже не мешают определению, если концентрации молибдена и вольфрама одного порядка. Только соединения ванадия катализируют указанную реакцию в такой же степени, как и соединения молибдена. [c.69]

    В составе комплексного соединения с азокрасителем хром находится в трехвалентном состоянии. Его определение основано на окислении вещества перманганатом калия. При этом органическая часть молекулы полностью окисляется с образованием воды, углекислого газа, ионов сульфата и т. п., а трехвалентный хром окисляется до шестивалентного  [c.338]

    Бихромат калия широко применяется в ряде промышленных синтезов органических соединений. Получающийся при этом трехвалентный хром может быть регенерирован в шестивалентный электрохимическим путем. Однако необходимость перевода отработанной жидкости в специальные электролизеры, проведение электроокислеипя растворов и обратный перевод их в емкости для окисления органического вещества усложняют технологию процесса. Большое число органических соединений можно окислить технологически более простым способом — электроокислением в присутствии солей хрома в качестве катализатора-переносчика. Таким образом, можно осуществлять реакцию окисления антрацена до антрахинона. Этот процесс идет в объеме раствора. Восстановленные ионы хрома окисляются на аноде до Сг + и вновь идут на окисление антрацена. Процесс протекает в анодном пространстве [c.563]

    Высокой чувствительностью обладают и другие индикаторные реакции с перекисью водорода в качестве окислителя. Например, в присутствии катализаторов она окисляет некоторые органические красители, что сопровождается появлением или исчезновением яркой окраски растворов. Скорость таких реакций измеряется по изменению светопоглощения растворов в единицу времени. Чувствительность реакций достаточно велика, так как высокой чувствительностью отличается метод измерения светопоглсицения растворов. К достоинствам реакций можно отнести н то, что для некоторых красителей они специфичны окисление Н-кислоты, сложного органического красителя, катализируется только соединениями железа, а окисление другого органического красителя — тропеолина 00 — катализируется только соединениями шестивалентного хрома. В табл. 6 указаны пределы концентрации катализаторов, определяемой с помощью реакций окисления перекисью водорода органических красителей. При помощи таких реакций окисления определяют железо, медь и хром в веществах особой чистоты и в некоторых солях редкоземельных элементов. [c.64]

    Соединения шестивалентного хрома. Окись хрома у ), ангидрид хромовой кислоты, СгОз, осаждается при добавлении большого избытка концентрированной серной кислоты к насыщенному раствору бихроматов в виде игольчатых кристаллов красивого темно-красного цвета, очень легко растворяющихся в воде. Эти кристаллы гигроскопичны их водный раствор желто-оранжевого цвета содержит хромовую кислоту Н2СГО4 и двухромовую кислоту Н2СГ2О7, которые не удается выделить упариванием, а поэтому они неизвестны в свободном виде. Окись хрома( /1) — сильный и широко применяемый окислитель. Если на кристаллы окиси хрома(У1) капать спирт, реакция идет настолько энергично, что спирт загорается. В результате реакции образуется СГ2О3 (см. стр. 404). Для окисления органических веществ используют растворы окиси хлора( 1) в уксусной кислоте, которую она не окисляет даже при кипячении. Кристаллы СгОз, нагретые до температуры выше 400°, слегка улетучиваются, большая часть СгОд при этом, однако, разлагается на СгзОд и О2. [c.645]

chem21.info

Шестивалентный хром - Большая Энциклопедия Нефти и Газа, статья, страница 2

Шестивалентный хром

Cтраница 2

Определение шестивалентного хрома основано на окислении им дифенилкарбазида в кислом растворе. Образующееся при этом соединение окрашивает раствор в красно-фиолетовый цвет. Интенсивность образовавшейся окраски сравнивают с интенсивностью окраски стандартного раствора хрома и определяют его содержание.  [16]

Соединения шестивалентного хрома ( хромовая кислота и ее соли) применяются при нанесении гальванических хромовых покрытий, при химической обработке ( травление, пассивирование) поверхности стальных изделий и изделий из медных сплавов, оцинкованных и кадмированных стальных изделий, при электрохимической обработке ( анодировании) изделий из алюминия и его сплавов, при электрополировке стальных изделий. Высокотоксичные соединения шестивалентного хрома содержатся в образующихся в этих процессах промывных сточных водах, а также в отработанных технологических растворах.  [17]

Соединения шестивалентного хрома ( хромовый ангидрид, хпомпики, хлористый хромил) используют в качестве сильных окислителей, в частности во многих процессах органического синтеза - при получении ализарина, сахарина, бензойной кислоты, антрахинона, гидрохинона, в производстве резин, пористых пластиков.  [18]

Соединения шестивалентного хрома получают окислением металлического хрома или соединений двух - и трехвалентного хрома. Они окрашены в желтый, оранжевый, красный или коричневый цвета и обладают окислительными свойствами.  [19]

Соединения шестивалентного хрома в Кислой среде являются сильными окислителями. Окисляя вещества, они переходят в соли трехвалентного хрома и изменяют окраску в зеленый цвет.  [20]

Соединения шестивалентного хрома являются сильными окислителями. Хромовый ангидрид при растворении в воде образует смесь полихромовых кислот. Все хромовые кислоты относятся к сильным; по мере усложнения их состава степень их диссоциации в разбавленных растворах возрастает.  [21]

Соединения шестивалентного хрома получают окислением различных типов соединений двух - и трехвалентного хрома. Они окрашены в желтый, оранжевый, красный или коричневый цвета и обладают окислительными свойствами.  [22]

Соли шестивалентного хрома, используемые для хромирования на волокне, для синтеза хромсодержащих азокрасителей непосредственно не применяются, а лишь с восстановителем, например с тиосульфатом.  [23]

Соединения шестивалентного хрома ( хромовый ангидрид, хромпики, хлористый хромил) используют в качестве сильных окислителей, в частности во многих процессах органического синтеза - при получении ализарина, сахарина, бензойной кислоты, антрахинона, гидрохинона, в производстве резин, пористых пластиков.  [24]

Окисел шестивалентного хрома СгО3 является ангидридом. Соли первой, например Na2CrO4) желтого цвета ( окраска анионов CrCV), они называются хрома-тами; соли второй, например Na2Cr207, оранжевого цвета ( окраска анионов СггО / 2), они называются бихроматами. Хрома-ты и бихроматы переходят друг в друга при добавке к раствору кислоты или щелочи.  [25]

При этом шестивалентный хром обычно переводится в трехвалентную форму прибавлением раствора бисульфита натрия, а затем в нерастворимое соединение добавлением щелочи, обычно известкового молока. При этой обработке ориентировочный расход реагентов составляет 4 весовые части бисульфита натрия и 6 весовых частей извести ( по СаО) на 1 весовую часть хрома. Устройства для этой обработки обеспечивают перемешивание, контакт с реагентами и осветление стока.  [26]

При этом шестивалентный хром восстанавливается до трехвалентного, в результате чего оранжевая окраска раствора переходит в зеленую. Качество пленки определяют по времени, прошедшему с момента нанесения капли до начала ее позеленения.  [27]

Катионы и шестивалентный хром отделяют на катионите.  [28]

Катионы и шестивалентный хром отделяют на катисяште.  [29]

Страницы:      1    2    3    4

www.ngpedia.ru


Смотрите также