• Главная

Укажите причину химической инертности хрома. Электронная схема хрома


строение атома, схема и примеры. Электронное строение атома железа

Рассмотрим электронное строение атома железа, а также его расположение в таблице Менделеева. Выявим основные физические и химические свойства данного элемента, области использования.

железо строение атома

Положение в ПС

Железо является д-элементом 8 группы (побочной подгруппы). Имеет 26 порядковый номер, относительную атомную массу - 56, в его атоме содержится 26 протонов, 26 электронов, а также 30 нейтронов. Данный металл имеет среднюю химическую активность, проявляет восстановительные свойства. Характерные степени окисления: +2, +3.

Особенности строения атома

Что собой представляет электронная схема строения атома железа? Если рассматривать распределение электронов по энергетическим уровням, получим следующий вариант:

2е; 8е; 14 е; 2е. Такое строение электронной оболочки атома железа свидетельствует о его расположении в побочной подгруппе, подтверждает принадлежность к д-семейству элементов.

строение атома железа схема

Нахождение в природе

Железо является одним из наиболее распространенных в природе химических элементов. В земной коре его процентное содержание составляет около 5,1%. В большем количестве в недрах нашей планеты присутствует только три элемента: кремний, алюминий, кислород.

Железные руды встречаются в разных регионах Земли. Алхимиками были обнаружены соединения данного металла в почвах. При производстве железа выбирают руды, в которых его содержание превышает 30 процентов.

В магнитном железняке содержится около семидесяти двух процентов металла. Основные месторождения магнетита располагаются в Курской магнитной аномалии, а также на Южном Урале. В кровавике процентное количество железа достигает 65 процентов. Гематит был обнаружен в Криворожском районе.

электронное строение атома железа

Значение для растений и животных

Какую роль в живых организмах выполняет железо? Строение атома поясняет его восстановительные свойства. Данный химический элемент входит в состав гемоглобина, придавая ему характерную красную окраску. Около трех граммов чистого железа, большая часть которого включена в гемоглобин, обнаружена в организме взрослого человека. Основным предназначением является перенос к тканям из легких активного кислорода, а также вывод образующегося углекислого газа.

Необходим этот металл и растениям. Входя в состав цитоплазмы, он принимает активное участие в процессах фотосинтеза. Если в растении недостаточно железа, его листья имеют белую окраску. При минимальных подкормках солями железа листья растений приобретают зеленый цвет.

электронная схема строения атома железа

Физические свойства

Мы рассмотрели строение атома железа. Схема подтверждает наличие у данного элемента металлического блеска (есть валентные электроны). У серебристо-белого металла довольно высокая температура плавления (1539 градусов по Цельсию). Благодаря хорошей пластичности данный металл легко поддается прокатке, штамповке, ковке.

Способность к намагничиванию и размагничиванию, характерная для железа, сделала его отличным материалом для производства сердечников мощных электромагнитов в разных аппаратах и электрических машинах.

Насколько активно железо? Строение атома показывает наличие на внешнем уровне двух электронов, которые будут отданы в ходе химической реакции. Для увеличения его твердости и прочности осуществляют дополнительную прокатку и закалку металла. Такие процессы не сопровождаются изменением строения атома.

строение электронной оболочки атома железа

Разновидности железа

Электронное строение атома железа, схема которого была рассмотрена выше, объясняет его химические характеристики. В технически чистом металле, являющемся низкоуглеродистой сталью, основным компонентом является железо. В качестве примесей выявлено около 0,04 процента углерода, также присутствуют фосфор, азот, сера.

Химически чистое железо по своим внешним параметрам аналогично платине. Оно обладает повышенной стойкостью к процессам коррозии, устойчиво к действию кислот. При малейшем введении примесей в чистый металл его уникальные характеристики исчезают.

Варианты получения

Строение атомов алюминия и железа свидетельствуют о принадлежности амфотерного алюминия к главной подгруппе, возможности использования его в процессе выделения железа из его оксидов. Алюмотермия, осуществляемая при повышенной температуре, позволяет выделять чистый металл из природных руд. Кроме алюминия в качестве сильных восстановителей выбирают водород, оксид углерода (2), уголь.

Особенности химических свойств

Какие химические свойства имеет железо? Строение атома поясняет его восстановительную активность. Для железа характерно образование двух рядов соединений, имеющих степени окисления +2, +3.

Во влажном воздухе происходит процесс ржавления (коррозии) металла, в результате образуется гидроксид железа (3). С кислородом нагретая железная проволока реагирует с появлением черного порошка оксида железа (2,3), называемого железной окалиной.

При высокой температуре металл способен взаимодействовать с парами воды, образуя при этом смешанный оксид. Процесс сопровождается выделением водорода.

Реакция с неметаллами происходит только при предварительном нагревании исходных компонентов.

Железо можно растворить в разбавленной серной или соляной кислотах без предварительного подогрева смеси. Концентрированные серная и соляная кислоты пассивируют этот металл.

Какими еще химическими свойствами обладает железо? Строение атома данного элемента свидетельствует о его средней активности. Это подтверждается расположением железа до водорода (Н2) в ряду напряжений. Следовательно, оно может вытеснять из солей все металлы, располагающиеся правее в ряду Бекетова. Так, в реакции с хлоридом меди (2), осуществляемой при нагревании, происходит выделение чистой меди и получение раствора хлорида железа (2).

строение атомов алюминия и железаОбласти применения

Основную часть всего железа используют в производстве чугуна и стали. В чугуне процентное содержание углерода составляет 3-4 процента, в стали – не больше 1,4 процентов. Этот неметалл выполняет функцию элемента, повышающего прочность соединения. Кроме того, он позитивно воздействует на коррозионные свойства сплавов, повышает устойчивость материала к повышенной температуре.

Добавки ванадия необходимы для повышения механической прочности стали. Хром увеличивает стойкость к действию агрессивных химических веществ.

Ферромагнитные свойства этого химического элемента сделали его востребованным в промышленных установках, включающих в состав электромагниты. Кроме того, железо нашло свое использование и в сувенирной промышленности. На его основе изготавливают различные сувениры, например красочные магнитики на холодильник.

Прочность и ковкость позволяют применять металл для создания брони, различных видов оружия.

Хлорид железа (3) применяют для очистки воды от примесей. В медицине 26 элемент периодической системы Менделеева применяют при лечении такого заболевания, как анемия. В случае недостатка красных кровяных телец возникает быстрая утомляемость, кожа приобретает неестественный бледный цвет. Препараты железа помогают устранять подобную проблему, возвращать организм к полноценной деятельности. Особое значение железо имеет для деятельности щитовидной железы, печени. Чтобы в организме человека не возникало серьезных проблем, достаточно употреблять в день около 20 мг этого металла.

fb.ru

Укажите причину химической инертности хрома -

Металлические детали содержащие хром не проявляют токсического действия на организм, поэтому применяются в медицинской практике. Сплавы Cr-Co используют хирургии. Укажите причину химической инертности хрома. Для подтверждения ответа приведите электронную конфигурацию и графическую схему в основном состоянии хрома и его Cr3+ и Cr6+.

Решение:

Основные принципы и правила, соответствии с которыми происходит заполнение уровней, подуровней и орбиталей:

1.Принцип наименьшей энергии:

Электрон занимает наиболее энергетически выгодную орбиталь, т.е. заполнение орбиталей в невозбужденном атоме осуществляется таким образом, чтобы энергия атома была минимальной.

2.Принцип Паули:

В одном атоме не может быть двух электронов, у которых значения всех четырех квантовых чисел были бы одинаковыми.

3.Правило Хунда:

В пределах подуровня электроны стремятся занять максимальное количество орбиталей.

Разберем электронную конфигурацию и графическую схему Cr, используя правила и принципы в соответствии с которыми происходит заполнение уровней, подуровней и орбиталей.

Значение n 1 2 3 4
Значение l 0 01 012 0123
Энергия электрона(n+l) 1 23 345 4567

Электронная конфигурация хрома в основном состоянии 24Cr[Ar]4s13d5.

4S подуровень заполняется раньше, чем 3d подуровень, т.к. энергия электрона на нем будет меньше, чем на нем будет меньше, чем 3d подуровень, согласно принципу наименьшей энергии. Валентные электроны склонны к «перескоку», т.к. если d-подуровень заполнен на половину или полностью d5 и d10, то атом более устойчив, поэтому электрон с 4s- подуровня переходит на 3d- подуровень.

Графическая схема заполнения электронами валентных орбиталей для нормального состояния атома хрома имеет вид :

24Cr[Ar]­­­(3d)­­­(4s)Cr6+ [Ar] 4S0 3d0; Cr6+ [Ar] —3d— — 4s—

Cr3+ [Ar] 4S0 3d0; Cr3+ [Ar] ­3d­­ —4S—

При составлении графических схем распределения электронов в атоме пользуются следующими обозначениями:

Черта — орбиталь,

Стрелка – электрон:

Направление стрелки – ориентация его спина.

Хром имеет шесть валентных электронов, он может взаимодействовать с кислородом, у которого имеются два неспаренных валентных электрона.

8O [Ar] ­¯3S¯­3p­­

Исходя, из графических схем следует, что при взаимодействии хрома с кислородом образуется оксид хрома, который покрывает поверхность хрома тончайшей, но очень тонкой защищающей металлический хром от воздействия кислорода, воды и углекислого газа.

Пассивирование хрома пленкой оксида делает его противокоррозионным материалом.

einsteins.ru

2.3 Электронные конфигурации атомов химических элементов - Мои статьи - Каталог файлов по химии

Швейцарский физик В. Паули в 1925 г. установил, что в атоме на одной орбитали может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины (в переводе с английского «веретено»), то есть обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей воображаемой оси: по часовой или против часовой стрелки. Этот принцип носит название принципа Паули.

Если на орбитали находится один электрон, то он называется неспаренным, если два, то это спаренные электроны, то есть электроны с противоположными спинами.Электронные конфигурации атомов химических элементов

 

На рисунке 5 показана схема подразделения энергетических уровней на подуровни.

s-Орбиталь, как вы уже знаете, имеет сферическую форму. Электрон атома водорода (s = 1) располагается на этой орбитали и неспарен. Поэтому его электронная формула или электронная конфигурация будет записываться так: 1s1. В электронных формулах номер энергетического уровня обозначается цифрой, стоящей перед буквой (1 ...), латинской буквой обозначают подуровень (тип орбитали), а цифра, которая записывается справа вверху от буквы (как показатель степени), показывает число электронов на подуровне.

Для атома гелия Не, имеющего два спаренных электрона на одной s-орбитали, эта формула: 1s2.

Электронная оболочка атома гелия завершена и очень устойчива. Гелий — это благородный газ.

На втором энергетическом уровне (n = 2) имеется четыре орбитали: одна s и три р. Электроны s-орбитали второго уровня (2s-орбитали) обладают более высокой энергией, так как находятся на большем расстоянии от ядра, чем электроны 1s-орбитали (n = 2).

Вообще, для каждого значения n существует одна s-орбиталь, но с соответствующим запасом энергии электронов на нем и, следовательно, с соответствующим диаметром, растущим по мере увеличения значения n.

р-Орбиталь имеет форму гантели или объемной восьмерки. Все три р-орбитали расположены в атоме взаимно перпендикулярно вдоль пространственных координат, проведенных через ядро атома. Следует подчеркнуть еще раз, что каждый энергетический уровень (электронный слой), начиная с n = 2, имеет три р-орбитали. С увеличением значения n электроны анимают р-орбитали, расположенные на больших расстояниях от ядра и направленные по осям х, у, г.

У элементов второго периода (n = 2) заполняется сначала одна в-орбиталь, а затем три р-орбитали. Электронная формула 1л: 1s22s1. Электрон слабее связан с ядром атома, поэтому атом лития может легко отдавать его (как вы, очевидно, помните, этот процесс называется окислением), превращаясь в ион Li+.

В атоме бериллия Ве0 четвертый электрон также размещается на 2s-орбитали: 1s22s2. Два внешних электрона атома бериллия легко отрываются — Ве0 при этом окисляется в катион Ве2+.

У атома бора пятый электрон занимает 2р-орбиталь: 1s22s22р1. Далее у атомов С, N, О, Е идет заполнение 2р-орбиталей, которое заканчивается у благородного газа неона: 1s22s22р6.

У элементов третьего периода заполняются соответственно Зв- и Зр-орбитали. Пять d-орбиталей третьего уровня при этом остаются свободными:

Иногда в схемах, изображающих распределение электронов в атомах, указывают только число электронов на каждом энергетическом уровне, то есть записывают сокращенные электронные формулы атомов химических элементов, в отличие от приведенных выше полных электронных формул.

У элементов больших периодов (четвертого и пятого) первые два электрона занимают соответственно 4я- и 5я-орбитали: 19К 2, 8, 8, 1; 38Sr 2, 8, 18, 8, 2. Начиная с третьего элемента каждого большого периода, последующие десять электронов поступят на предыдущие 3d- и 4d- орбитали соответственно (у элементов побочных подгрупп): 23V 2, 8, 11, 2; 26Tr 2, 8, 14, 2; 40Zr 2, 8, 18, 10, 2; 43Тг 2, 8, 18, 13, 2. Как правило, тогда, когда будет заполнен предыдущий d-подуровень, начнет заполняться внешний (соответственно 4р- и 5р ) р-подуровень.

У элементов больших периодов — шестого и незавершенного седьмого — электронные уровни и подуровни заполняются электронами, как правило, так: первые два электрона поступят на внешний в-подуровень: 56Ва 2, 8, 18, 18, 8, 2; 87Гг 2, 8, 18, 32, 18, 8, 1; следующий один электрон (у Nа и Ас) на предыдущий (p-подуровень:57Lа 2, 8, 18, 18, 9, 2 и 89Ас 2, 8, 18, 32, 18, 9, 2.

Затем последующие 14 электронов поступят на третий снаружи энергетический уровень на 4f- и 5f-орбитали соответственно у лантаноидов и актиноидов.

Затем снова начнет застраиваться второй снаружи энергетический уровень (d-подуровень): у элементов побочных подгрупп: 73Та 2, 8,18, 32,11, 2; 104Rf 2, 8,18, 32, 32,10, 2, — и, наконец, только после полного заполнения десятью электронами сйгоду-ровня будет снова заполняться внешний р-подуровень:

86Rn 2, 8, 18, 32, 18, 8.

Очень часто строение электронных оболочек атомов изображают с помощью энергетических или квантовых ячеек — записывают так называемые графические электронные формулы. Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два правила: принцип Паули, согласно которому в ячейке (орбитали) может быть не более двух электронов, но с антипараллельными спинами, и правило Ф. Хунда, согласно которому электроны занимают свободные ячейки (орбитали), располагаются в них сначала по одному и имеют при этом одинаковое значение спина, а лишь затем спариваются, но спины при этом по принципу Паули будут уже противоположно направленными.

В заключение еще раз рассмотрим отображение электронных конфигураций атомов элементов по периодам системы Д. И.Менделеева. Схемы электронного строения атомов показывают распределение электронов по электронным слоям (энергетическим уровням).Электронные конфигурации атомов химических элементов

 

В атоме гелия первый электронный слой завершен — в нем 2 электрона.

Водород и гелий — s-элементы, у этих атомов заполняется электронами s-орбиталь.

Элементы второго периода

У всех элементов второго периода первый электронный слой заполнен и электроны заполняют е- и р-орбитали второго электронного слоя в соответствии с принципом наименьшей энергии (сначала s-, а затем р ) и правилами Паули и Хунда (табл. 2).

В атоме неона второй электронный слой завершен — в нем 8 электронов.

Таблица 2 Строение электронных оболочек атомов элементов второго периодаЭлектронные конфигурации атомов химических элементов

Окончание табл. 2Электронные конфигурации атомов химических элементов

 

Li, Ве — в-элементы.

В, С, N, О, F, Nе — р-элементы, у этих атомов заполняются электронами р-орбитали.

Элементы третьего периода

У атомов элементов третьего периода первый и второй электронные слои завершены, поэтому заполняется третий электронный слой, в котором электроны могут занимать Зs-, 3р- и Зd-подуровни (табл. 3).

Таблица 3 Строение электронных оболочек атомов элементов третьего периода

Электронные конфигурации атомов химических элементов

 

У атома магния достраивается Зs-электронная орбиталь. Nа и Mg— s-элементы.Электронные конфигурации атомов химических элементов

 

В атоме аргона на внешнем слое (третьем электронном слое) 8 электронов. Как внешний слой, он завершен, но всего в третьем электронном слое, как вы уже знаете, может быть 18 электронов, а это значит, что у элементов третьего периода остаются незаполненными Зd-орбитали.

Все элементы от Аl до Аг — р-элементы. s- и р-элементы образуют главные подгруппы в Периодической системе.

У атомов калия и кальция появляется четвертый электронный слой, заполняется 4s-подуровень (табл. 4), так как он имеет меньшую энергию, чем Зй-подуровень. Для упрощения графических электронных формул атомов элементов четвертого периода: 1) обозначим условно графическую электронную формулу аргона так:Аr;

2) не будем изображать подуровни, которые у этих атомов не заполняются.

Таблица 4 Строение электронных оболочек атомов элементов четвертого периода

Электронные конфигурации атомов химических элементов

Электронные конфигурации атомов химических элементов

 

К, Са — s-элементы, входящие в главные подгруппы. У атомов от Sс до Zn заполняется электронами Зй-подуровень. Это Зй-элементы. Они входят в побочные подгруппы, у них заполняется предвнешний электронный слой, их относят к переходным элементам.

Обратите внимание на строение электронных оболочек атомов хрома и меди. В них происходит «провал» одного электрона с 4я- на Зй-подуровень, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций Зd5 и Зd10:Электронные конфигурации атомов химических элементов

 

В атоме цинка третий электронный слой завершен — в нем заполнены все подуровни 3s, Зр и Зd, всего на них 18 электронов.

У следующих за цинком элементов продолжает заполняться четвертый электронный слой, 4р-подуровень: Элементы от Gа до Кr — р-элементы.Электронные конфигурации атомов химических элементов

 

У атома криптона внешний слой (четвертый) завершен, имеет 8 электронов. Но всего в четвертом электронном слое, как вы знаете, может быть 32 электрона; у атома криптона пока остаются незаполненными 4d- и 4f- подуровни.

У элементов пятого периода идет заполнение подуровней в следующем порядке:  5s->  4d -> 5р. И также встречаются исключения, связанные с «провалом» электронов, у 41Nb, 42MO и т.д.

В шестом и седьмом периодах появляются элементы, то есть элементы, у которых идет заполнение соответственно 4f- и 5f-подуровней третьего снаружи электронного слоя.

4f-Элементы называют лантаноидами.

5f-Элементы называют актиноидами.

Порядок заполнения электронных подуровней в атомах элементов шестого периода: 55Сs и 56Ва — 6s-элементы;

57Lа... 6s25d1 — 5d-элемент; 58Се — 71Lu — 4f-элементы; 72Hf — 80Нg — 5d-элементы; 81Тl— 86Rn — 6р-элементы. Но и здесь встречаются элементы, у которых «нарушается» порядок заполнения электронных орбиталей, что, например, связано с большей энергетической устойчивостью наполовину и полностью заполненных f подуровней, то есть nf7 и nf14.

В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы, как вы уже поняли, делят на четыре электронных семейства или блока (рис. 7).

1)    s-Элементы; заполняется электронами в-подуровень внешнего уровня атома; к s-элементам относятся водород, гелий и элементы главных подгрупп I и II групп;

2)    р-элементы; заполняется электронами р-подуровень внешнего уровня атома; к р элементам относятся элементы главных подгрупп III—VIII групп;

3)    d-элементы; заполняется электронами d-подуровень предвнешнего уровня атома; к d-элементам относятся элементы побочных подгрупп I—VIII групп, то есть элементы вставных декад больших периодов, расположенные между s- и р-элементами. Их также называют переходными элементами;

4)    f-элементы, заполняется электронами f-подуровень третьего снаружи уровня атома; к ним относятся лантаноиды и актиноиды.

1.    Что было бы, если бы принцип Паули не соблюдался?

2.    Что было бы, если бы правило Хунда не соблюдалось?

3.    Составьте схемы электронного строения, электронные формулы и графические электронные формулы атомов следующих химических элементов: Са, Fе, Zr, Sn, Nb, Hf, Ра.

4.    Напишите электронную формулу элемента № 110, используя символ соответствующего благородного газа.

5.    Что такое «провал» электрона? Приведите примеры элементов, у которых это явление наблюдается, запишите их электронные формулы.

6.    Как определяется принадлежность химического элемента к тому или иному электронному семейству?

7.    Сравните электронную и графическую электронную формулы атома серы. Какую дополнительную информацию содержит последняя формула?

www.xn--90aeobaarlnb3f3fe.xn--p1ai


Смотрите также