• Главная

Способ очистки сточных вод от соединений шестивалентного хрома. Очистка сточных вод от хрома шестивалентного


Способ очистки сточных вод от шестивалентного хрома

 

Использование: очистка хромсодержащих стоков в химической, металлургической и машиностроительной отраслях промышленности. Сущность изобретения: проводят восстановление шестивалентного хрома в трехвалентный в кислой среде с последующим осаждением его соединений щелочью в две стадии, причем первую стадию проводят водными растворами восстановителя, а вторую стадию путем добавления сухого реагента к фильтрату первой стадии, при этом первую стадию ограничивают степенью восстановления не более 98,4%. Способ позволяет при сниженном расходе реагентов обеспечить высокую степень очистки и упростить отделение шлама от очищенных стоков. 1 з.п. ф-лы, 1 табл. 4 пр.

Изобретение относится к области очистки сточных вод от хрома и может быть использовано в химической, металлургической и машиностроительной отраслях промышленности.

Среди известных способов очистки сточных вод от хрома наиболее широкое применение нашли способы реагентной очистки, т.к. они обеспечивают высокую степень очистки, просты в эксплуатации, удобны для автоматизации. Основная задача при реагентной очистке хромсодержащих стоков является восстановление шестивалентного хрома в трехвалентный хром. Так как соединения последнего значительно менее токсичны и наиболее полно удаляются в щелочной среде в виде труднорастворимого гидроксида хрома (III). Учитывая очень низкую растворимость Сr(OH)3 в воде (ПРСr/ОН)3 1 х 10-30, можно обеспечить остаточную концентрацию соединений хрома в очищенных реагентным методом хромсодержащих стоках ниже предельно допустимой концентрации Сr(III) для открытых водоемов. Недостатком реагентных способов очистки хромсодержащих стоков является большой расход реагентов для очистки, значительно (в несколько раз) превышающий стехиометрический расход [1] Наиболее близким по технической сущности и достигаемому эффекту является способ обезвреживания хромсодержащих сточных вод, основанный на восстановлении шестивалентного хрома в трехвалентный водным раствором сульфита натрия в кислой среде с последующим осаждением гидроокиси хрома щелочью [2] Недостатком указанного способа является большой расход реагентов, так как требуется 5-8-кратный избыток для достижения высокой степени очистки, особенно при очистке концентрированных (порядка 300 г/л) стоков, а также имеют место трудности разделения шлама от очищенных стоков. Задачей изобретения является снижение расхода реагентов для очистки и упрощение стадии отделения шлама от очищенных стоков. Поставленная цель достигается за счет того, что восстановление шестивалентного хрома в трехвалентный и отделение твердой фазы проводят в две стадии, причем первую стадию проводят водными растворами реагентов, а вторую стадию проводят путем добавления сухого реагента к фильтрату после отделения осадка первой стадии, при этом первую стадию ограничивают степенью восстановления не более 98,4% Предлагаемый способ очистки хромсодержащих стоков позволяет упростить стадию восстановления и отделения с осадком хрома, что обеспечивает при меньшем расходе реагентов достичь высокой степени очистки. Указанный эффект достигается за счет того, что в отличие от известного способа выделение соединений хрома из сточных вод в две стадии позволяет при более экономичном расходе реагентов обеспечить лучшую технологию отделения осадка труднорастворимых соединений хрома. Доказано, что на второй стадии (при небольшой концентрации примесей хрома) добавление реагента в виде сухой соли также обеспечивает протекание процесса при меньшем избытке реагента. При изменении степени очистки сточных вод от соединений хрома на первой стадии за установленный предел приводит к потере достигаемого эффекта. Так, при степени очистки на I стадии ниже 98,4% снижения расхода реагента не наблюдается, а при степени очистки выше 98,4% требуется повышение избытка реагента, следовательно,увеличивается его расход. Пример 1. Очистку проводят в две стадии. Состав исходного неочищенного стока следующий,г/л: СrO3 215,8, Сr2O3 5,86 I стадия. Для очистки к 25 см3 неочищенного стока добавляют 25 мл дистиллированной воды и 75 см3 30%-ного водного раствора Na2SO3 и подогревают до 60oС, затем приливают 5 см3 10% -го раствора NaOH. Осадок отфильтровывают, промывают водой. II стадия. К 25 см3 фильтрата первой стадии приливают 17 см 3 3%-ного раствора h3SO4 до рН 4-5, затем добавляют при перемешивании 7 г сухой соли Na2SO3 и приливают 15 см3 5%-ного раствора Са(OH)2, образовавшийся осадок отфильтровывают. В фильтрате определяют содержание шестивалентного и трехвалентного хрома. Соединение хрома в фильтрате отсутствуют. Степень очистки по отношению к исходному стоку и расход реагентов приведены в таблице. Пример 2 (прототип). Очистку проводят в одну стадию водными растворами реагентов. Для очистки исходный сток берут аналогично примеру 1 состава. К 25 см3 неочищенного стока добавляют 90 см 30%-ного водного раствора Na2SO3, приливают 5 см3 10%-го раствора NaOH, подогревают до 60oС, образовавшийся осадок отфильтровывают, промывают водой. В фильтрате определяют содержание шестивалентного и трехвалентного хрома. Суммарная концентрация хрома в фильтрате 1,86 г/л. Степень очистки и расход реагентов приведены в таблице. Пример 3 (контрольный). Аналогично примеру 1, на второй стадии Na2SO3 добавляют в виде 30%-ного водного раствора. Пример 4 (контрольный). Аналогично примеру 3, избыток реагентов увеличен. Приведенные данные (таблица) показывают, что в предлагаемом способе (пример 1) по сравнению с прототипом (пример 2) достигается снижение расхода Na2SO3 на 26,5% при увеличении степени очистки с 98,4 до 100% Образовавшийся осадок легко отделяется. В примере 2 осадок трудно отфильтровывается. В контрольном примере 3, в котором процесс очистки разделен на 2 стадии (аналогично примеру 1), но при этом Na2SO3 на второй стадии применяют не в виде соли, а в виде 30%-ного водного раствора, не достигается полной очистки стока. При значительном увеличении избытка реагентов (пример 4) полную очистку достигают, но даже при двухстадийной очистке в случае использования водного раствора Na2SO3 на второй стадии вместо соли расход реагентов увеличивается.

Формула изобретения

1. Способ очистки сточных вод от шестивалентного хрома путем его восстановления в трехвалентный водным раствором восстановителя в кислой среде с последующим осаждением соединений хрома щелочью и отделением образующегося осадка от фильтрата, отличающийся тем, что процесс очистки проводят в две стадии, причем на первой стадии используют водный раствор восстановителя, а восстановлением шестивалентного хрома на второй стадии осуществляют путем добавления сухой соли восстановителя к фильтрату первой стадии. 2. Способ по п.1, отличающийся тем, что первую стадию осуществляют до степени очистки 98,4%

РИСУНКИ

Рисунок 1

www.findpatent.ru

Очистка сточных вод от ионов хрома

Очистка сточных вод от ионов тяжелых металлов осуществляется путем перевода ионов тяжелых металлов в малорастворимые соединения (гидроксиды) при нейтрализации сточных вод с помощью различных щелочных реагентов. Реагентная очистка сточных вод от шестивалентного хрома состоит из двух стадий:

1) восстановление шестивалентного хрома до трехвалентного;

2) осаждение трехвалентного хрома в виде гидроксида .

В качестве реактивов- восстановителей наибольшее применение получили натриевые соли сернистой кислоты – сульфит, бисульфит, пиросульфит  (Na2S2O5), а также дитионит натрия (Na2S2O4). Восстановление Cr6+ до Cr3+ происходит по реакциям:

Cr2O72- + 3SO34- + 8H+ = 2Cr3+ + 3SO42- + 4h3O;

Cr2O72- + 3HSO3¯ + 5H+ = 2Cr3+ + 3SO42- + 4h3O

Теоретические дозы реагентов-восстановителей составляют (мг/1мг Cr6+): для сульфита 3,63; бисульфита 3,0; пиросульфита 2,88. Соли сернистой кислоты добавляют к сточным водам в виде 10%-ных водных растворов. Доза восстановителя зависит от исходной концентрации Cr6+ в сточной воде и величины  рН. Скорость и полнота реакций восстановления Cr6+ доCr3+ в большей степени также зависят от величины рН реакционной смеси.

После окончания реакции восстановления Cr6+ в кислой среде сточные воды подвергают нейтрализации с целью осаждения Cr3+ в виде гидроксида по реакции:

Cr3+ + 3ОН¯ → Cr(ОН)3↓.

Разработан одноступенчатый метод очистки хромсодержащих сточных вод с использованием  в качестве реагента FeS, получаемого в обрабатываемом растворе путем введения в него двух(трех)-кратного избытка FeSO4, Na2S2O5 или  NaHSO4 по отношению к концентрации  Cr(VI). Удаление Cr(VI) происходит по реакции:

h3CrO4 + FeS + h3O → Cr(OH)3 + Fe(OH)3 + S + h3O.

При начальной концентрации Cr(VI) в сточных водах 50 мг/л остаточная концентрация составляет 0,05 мг/л. При стандартной двухступенчатой обработке остаточная концентрация составляла бы 0,2-0,3 мг/л. Преимущества: значительно меньшая остаточная концентрация, не требуется работать в узком пределе рН, всего одна степень обработки, присутствие комплексообразователей не влияет на величину остаточной концентрации. Для очистки сточных вод содержащих ионы хрома, никеля и цинка в основном используют метод электрокоагуляции.

В результате электролитического растворения стальных анодов при рН>2 образуются ионы Fe2+.  Одновременно   с   этим    ионы Fe2+,   а    также    гидроксид железа (II), способствуют химическому восстановлению Cr6+ до Cr3+ по следующим реакциям:

при рН<5,5    Cr2O72- +6Fe2+ + 14H+ → 6Fe3+ +2Cr3+ +7h3O

при рН>5,5  Cr2O72- +3Fe(OH) + 4h3O → 3Fe(OH)3 + 2Cr(OH)3 + 2OH¯

Некоторое количество  CrO42- и Cr2O72- ионов восстанавливается до ионов Cr3+ в результате катодных электрохимических процессов:

Cr2O72- + 14H+ + 6ē →  2Cr3+ +7h3O

Cr2O72- + 4h3O + 3ē  →  2Cr(OH)3 + 5OH¯

При электрохимической обработке сточных вод происходит их подщелачивание, что способствует коагуляции гидроксидов железа (II) и (III) и хрома (III), а также гидроксидов других  тяжелых металлов, ионы которых могут содержаться в сточных водах.

Электрокоагулятор включает в себя две секции: пластинчатый электролизер вертикального исполнения с подводом очищаемой воды снизу вверх и осветлитель. Электролиз проводят при плотности тока на аноде 0,6-1,5 А/дм2 для концентрированных вод и 0,15-0,18 А/дм2 для разбавленных (<100 мг/л), напряжении на электродах 12-24 В, продолжительности обработки 60-180 секунд. Материал электродов – низкоуглеродистая сталь (Ст3, Ст3),  толщина электродов 3-8 мм, расстояние между электродами 6-12 мм.

В качестве осветлителя используют отстойники, флотаторы-отстойники, флотаторы-осветлители. Степень очистки сточных вод составляет 90-95% . В основе принципа гальванокоагуляции лежат те же физико-химические процессы, которые составляют сущность электрокоагуляции. Отличие данного метода заключается в способе  введения в обрабатываемый сток ионов железа, а также в отсутствии электростатической коагуляции, возникающей при наложении электрического поля. При данном методе очистки, очищаемую воду пропускают через железные стружки, смешанные с коксом в соотношении 4:1. За счет разности электрохимических потенциалов железо переходит в раствор:

Fe - 2ē → Fe2+

Процесс гальванокоагуляции проводят в проточных вращающихся аппаратах барабанного типа. При вращении стружечная загрузка попеременно то погружается в сток, то оказывается на воздухе, в результате протекает следующая реакция:

4Fe2+ + O2 + 10h3O → 4Fe(OH)3 +8H+

В свою очередь соединения железа(III) при контакте с железной стружкой восстанавливаются до железа(II). Соединения железа (II) способствуют восстановлению хрома(VI) до хрома(III).

vseokraskah.net

Способ очистки сточных вод от соединений шестивалентного хрома

Изобретение относится к очистке промышленных стоков, в частности хромсодержащих сточных вод от токсичных соединений шестивалентного хрома, и может найти применение в гальванических и производствах, имеющих хромсодержащие стоки. Способ очистки сточных вод от соединений шестивалентного хрома включает их взаимодействие с содержащим железо дисперсным реагентом при одновременном воздействии создаваемого электромагнитом магнитного поля с получением нерастворимого осадка. В качестве содержащего железо дисперсного реагента используют дробленую железную либо стальную стружку, воздействие осуществляют управляемым магнитным полем, направление вектора напряженности которого меняют путем периодического изменения полярности тока в обмотках электромагнита, а величиной напряженности управляют, изменяя силу тока в его обмотках, при этом осадок гидроксида хрома Cr(ОН)3 получают, нейтрализуя прореагировавшую смесь щелочью. Технический результат - повышение степени очистки сточных вод при одновременном сокращении продолжительности процесса, упрощение аппаратурного оформления и повышение экономичности способа. 1 ил., 2 пр.

 

Изобретение относится к очистке промышленных стоков, в частности хромсодержащих сточных вод, от токсичных соединений шестивалентного хрома и может найти применение в гальванических и других производствах, имеющих хромсодержащие стоки.

Известен способ очистки хромсодержащих сточных вод (пат. РФ №2025467, опубл. 1994.12.30), включающий их пропускание через слой железосодержащих отходов и обработку газовым компонентом, в котором стоки с рН 2,0-4,0 пропускают при аэрации металлического слоя воздухом с часовым расходом 192 дм3 и линейной скоростью пропускания шестивалентного хрома 1920-3460 мг/ч-1 на 1 дм3 металлических отходов. Недостатком известного способа является необходимость использования высокопроизводительных насосных агрегатов для пропускания через слой металлических отходов сточных вод и газовых компонентов с высокой линейной скоростью, что приводит к значительным энергозатратам и высокой стоимости очистки. Кроме того, для используемого реактора, работающего под высоким давлением, необходим корпус повышенной прочности, что также приводит к увеличению затрат на очистку.

Известен способ восстановления хрома (VI) в сточных водах (а.с. СССР №1514815, опубл. 1989.10.15), включающий смешивание хромсодержащего раствора с раствором кислоты в слое стружки из отходов графитизированного чугуна с подачей кислоты снизу вверх, при этом смешивание хромсодержащей сточной воды производят с восходящим потоком раствора кислоты в слое стружек. В качестве раствора кислоты может быть использована часть исходной хромсодержащей воды, подкисленной в анодной камере диафрагменного электролизера с нерастворимым анодом, при этом через подкисленную в анодной камере электролизера хромсодержащую сточную воду перед подачей ее в слой стружек пропускают водород, полученный в катодной камере электролизера. К недостаткам известного способа относятся недостаточно высокая степень очистки стоков от соединений шестивалентного хрома, а также значительные энергозатраты, многоступенчатость и продолжительность процесса очистки.

Известен описанный в патенте Румынии №127099, опубл. 2012.02.28, способ очистки сточных вод, содержащих шестивалентный хром в количестве 1-100 мг/л, в соответствии с которым для восстановления шестивалентного хрома до трехвалентного сточные воды приводят во взаимодействие с железной стружкой (или опилками) на 1-2 часа при значении рН 2-2,5, затем помещают в емкость, куда добавляют 30% раствор NaOH до значения рН 8,3 и оставляют на 5 часов. Достигнутая степень очистки стоков позволяет сливать их в канализационную систему. Недостатком известного способа является недостаточная эффективность процесса очистки, не позволяющая обрабатывать сточные воды с содержанием хрома (VI) свыше 100 мг/л, и его значительная продолжительность.

Наиболее близким к заявляемому является способ очистки сточных вод от ионов шестивалентного хрома (пат. Украины №70644, опубл. 2004.10.15), включающий их обработку в подкисленной среде (рН 1,65-2,0) в проточной системе путем осаждения на дисперсном железосодержащем рабочем теле, а именно на специально изготовленных железных иглах, в постоянном магнитном поле напряженностью 40-560 кА/м в течение 50-60 с, при этом скорость пропускания сточных вод высчитывают по формуле в зависимости от параметров рабочей камеры.

Известный способ не обеспечивает достаточно высокой эффективности очистки сточных вод, что обусловлено условиями их взаимодействия с неподвижным рабочим телом, в большинстве случаев не обеспечивающими быстрого и одновременно полного протекания химических реакций. Скорость пропускания сточных вод определяют по формуле, не учитывающей величину концентрации в них ионов Cr6+, непостоянную как в любых отходах, при этом завышенная скорость приводит к снижению степени извлечения Cr6+, a заведомое уменьшение скорости пропускания является нерациональным из-за увеличения продолжительности процесса очистки. Энергоемкость известного способа определяется необходимостью непрерывной работы насосных агрегатов, а его аппаратурное оформление осложняется наличием регулирующих устройств, поддерживающих заданную скорость пропускания сточных вод, а также оборудования для загрузки и выгрузки отработанных железных игл.

Наиболее близким к заявляемому является способ очистки сточных вод от ионов тяжелых металлов (а.с. SU №1761686, опубл. 1992.09.15), включающий взаимодействие содержащих соединения шестивалентного хрома сточных вод со смесью суспензии монокристаллов высокодисперсного (0,05-0,1 мкм) железа дендритообразной структуры с диспергированным угольным порошком в присутствии намагниченных сферических частиц, преимущественно спеченного гексаферита бария, в псевдоожиженной среде при одновременном воздействии переменного магнитного поля с осаждением соединений трехвалентного хрома.

Известный способ требует предварительного получения высокодисперсного железа путем электролитического восстановления соляно- или сернокислых растворов после травления стали, осуществляемого для повышения дисперсности железа в двухфазной среде, включающей слой органических веществ, либо путем плазменно-физического диспергирования, что усложняет способ и увеличивает расход электроэнергии, к тому же способ неосуществим без использования дополнительных реагентов (намагниченных сферических частиц гексаферита бария, угольного порошка), что также увеличивает расходы на проведение очистки сточных вод. Кроме того, движение намагниченных частиц гексаферита бария в магнитном поле с постоянным значением напряженности не обеспечивает достаточной интенсификации реакции взаимодействия соединений шестивалентного хрома с железосодержащим реагентом.

Задачей изобретения является создание эффективного и экономичного способа очистки хромсодержащих сточных вод от соединений шестивалентного хрома.

Техническим результатом изобретения является сокращение продолжительности процесса за счет повышения скорости и полноты протекания реакций и повышение экономичности способа за счет его упрощения, снижения трудозатрат, расхода электроэнергии и реагентов.

Указанный технический результат достигают способом очистки сточных вод от соединений шестивалентного хрома, включающим их взаимодействие с содержащим железо дисперсным реагентом при одновременном воздействии создаваемого электромагнитом магнитного поля с получением нерастворимого осадка, в котором, в отличие от известного, в качестве содержащего железо дисперсного реагента используют дробленую железную либо стальную стружку, воздействие осуществляют управляемым магнитным полем, направление вектора напряженности которого меняют путем периодического изменения полярности тока в обмотках электромагнита, а величиной напряженности управляют, изменяя силу тока в его обмотках, при этом осадок гидроксида хрома Cr(ОН)3 получают, нейтрализуя прореагировавшую смесь щелочью.

Способ осуществляют с помощью реактора, схематично показанного на чертеже и включающего выполненный из пластмассы корпус 1 в виде размещенного горизонтально цилиндра, который с торцевых сторон снабжен подающими и выводящими патрубками: в верхней части одного торца он снабжен патрубком 2 для подачи сточных вод и патрубком 3 для подачи химических реагентов, а в нижней части другого торца - патрубком 4 для слива очищенной воды и вывода жидкой суспензии полученных гидроксидов. Кроме того, с двух противоположных торцевых сторон корпуса 1 выполнены загрузочное 5 и разгрузочное 6 окна для дисперсного железосодержащего рабочего тела (железной стружки). Для создания управляемого переменного магнитного поля служат снабженные управляющей электронной схемой (на чертеже не показана) электромагниты (индукторы) 7, размещенные в определенном порядке на рассчитанном расстоянии друг от друга на внешней поверхности реактора 1.

Способ осуществляют следующим образом.

Кислые сточные воды, содержащие ионы шестивалентного хрома, например, отработанный электролит хромирования, заливают в пластиковый реактор 1 с предварительно загруженной железной дробленой стружкой и приводят в действие электромагниты (индукторы) 7, создающие магнитное поле, которое способно перемещать железное рабочее тело в направлении оси электромагнита, выполненного в виде соленоида (катушки с обмоткой).

При протекании электрического тока в обмотке соленоида возникает электромагнитное поле, которое взаимодействует с железным рабочим телом по известному «правилу буравчика», втягивая либо выталкивая его в направлении оси соленоида в зависимости от направления тока в обмотке. Путем периодического изменения полярности тока в обмотках размещенных снаружи реактора 1 электромагнитов 7 вызывают перемещение железного рабочего тела «взад-вперед» в направлении, параллельном осям соленоидов, при этом интенсивность взаимодействия рабочего тела с магнитным полем, зависящую от напряженности последнего, регулируют за счет изменения силы тока в обмотках.

Таким образом, с помощью управляемого переменного магнитного поля обеспечивают интенсивное механическое перемешивание и распределение по всему объему реактора мелкодисперсной дробленой железной стружки и создание эффективного рабочего тела в виде «облака» движущихся взвешенных дисперсных частиц, которые вдобавок разогреваются за счет индукционных токов, наведенных индукторами 7. Образующие рабочее тело дисперсные частицы железа, в силу своих малых размеров, нагреваются незначительно, однако наблюдающегося повышения температуры реакционной смеси достаточно для ускорения химической реакции.

Значительное увеличение эффективной площади взаимодействия сточных вод с дисперсным рабочим телом и повышение температуры реакционной смеси обеспечивают увеличение скорости и полноты протекания химической реакции между соединениями шестивалентного хрома и соединениями железа с образованием солей трехвалентного хрома. После нейтрализации прореагировавшего содержимого реактора раствором щелочи получают осадок гидроксида хрома Cr(ОН)3 в виде суспензии гидроксида хрома и очищенной воды.

По окончании процесса очистки, время протекания которого зависит от объема и концентрации очищаемых стоков, с помощью магнитного поля электромагнитов-индукторов выводят использованное рабочее тело (дробленую железную стружку) из реактора через разгрузочное окно 6.

В предлагаемом способе в качестве реактора могут быть задействованы недорогие цилиндрические пластиковые емкости (трубы большого диаметра), в качестве рабочего тела - отходы механической обработки железа и стали, к тому же он не требует получения и применения дополнительных реагентов, что имеет немаловажное значение для практического осуществления способа.

Примеры конкретного осуществления способа

Пример 1

Сточную воду гальванического производства в количестве 5 литров, содержащую ионы Cr(VI) с концентрацией 100 мг/л при pH 1,5, обрабатывают в течение 5 мин в реакторе с мелкодробленой стальной стружкой марки Ст3 в управляемом переменном магнитном поле с использованием 6 электромагнитов. Добавляют раствор NaOH до значения pH 7.

Содержание в очищенной воде ионов Cr(VI) составляет 0,015 мг/л. Полученный осадок содержит около 50% гидроксида хрома, остальное преимущественно составляет гидроксид трехвалентного железа.

Пример 2

Раствор кислых сточных вод (5 л), содержащих ионы Cr(VI) с концентрацией 50 мг/л при pH 2, обрабатывают по примеру 1 в течение 3,5 мин, используя дробленые железные стружки, затем нейтрализуют раствором Ca(ОН)2 (до pH 7).

Содержание в очищенной воде ионов Cr(VI) составляет 0,010 мг/л. Полученный осадок содержит около 35% гидроксида хрома.

Способ очистки сточных вод от соединений шестивалентного хрома, включающий их взаимодействие с содержащим железо дисперсным реагентом при одновременном воздействии создаваемого электромагнитом магнитного поля с получением нерастворимого осадка, отличающийся тем, что в качестве содержащего железо дисперсного реагента используют дробленую железную либо стальную стружку, воздействие осуществляют управляемым магнитным полем, направление вектора напряженности которого меняют путем периодического изменения полярности тока в обмотках электромагнита, а величиной напряженности управляют, изменяя силу тока в его обмотках, при этом осадок гидроксида хрома Cr(ОН)3 получают, нейтрализуя прореагировавшую смесь щелочью.

www.findpatent.ru

Гальваника. Очистка хромсодержащих сточных вод. Очистка циансодержащих сточных вод. Концентрирование рассолов упариванием

ГАЛЬВАНИКА

ОЧИСТКА  ХРОМСОДЕРЖАЩИХ  СТОЧНЫХ  ВОД

Задачей локальной очистки является восстановление хрома  шестивалентного до хрома трехвалентного. Сточные воды  с восстановленным хромом следует направлять в усреднитель кислотно-щелочного потока для удаления ионов тяжелых металлов.

Реагентный метод

Реагентный метод может быть использован без ограничения по концентрации шестивалентного хрома и расходу промстоков.

Для восстановления шестивалентного хрома могут быть использованы следующие реагенты:

·  бисульфит натрия  NaHSO3

·  сульфит натрия   Na2SO3

·  гидросульфит натрия Na2S2O4

·  сернистый ангидрит SO2

·  железный купорос  FeSO4*7h3O

Реакция восстановления шестивалентного хрома протекает быстро в кислой среде при рН 1-2. Предварительное подкисление сточных вод следует осуществлять 10% раствором серной кислоты.

Восстановление шестивалентного хрома бисульфатом натрия происходит по реакции

Cr2O72-+ 3SO42- +8H+ à 2Cr3+ + 3SO42- + 4h3O

По стехиометрическому расчету на восстановление 1 мг шестивалентного хрома требуется 3 мг бисульфита натрия. Фактическое количество бисульфита натрия зависит от рН среды и превышает теоретическое в 1,5-2 раза.

Восстановление шестивалентного хрома гидросульфитом натрия и пиросульфитом натрия  происходит по реакции

2Cr2O72- +3S2O42- +4H+ à 4Cr3+ + 6SO42- + 2h3O

2Cr2O72- + 3S2O42- + 10H+ à 4Cr3++ 6SO42- + 5h3O

Восстановление шестивалентного хрома сернистым ангидридом происходит по реакции

Cr2O72- + 3SO22- + 2H+  à 2Cr3+ + 3SO42- + h3O

Восстановление шестивалентного хрома железным купоросом до трехвалентного осуществляется при рН 3,7 по реакции

h3Cr2O7  + 6FeSO4 + 6h3SO4 à Cr2(SO4)3 + 3Fe2(SO4)3 + 7h3O

Фактическое потребление FeSO4*7h3O составляет 16  весовых частей на  одну весовую часть шестивалентного хрома.

Период обработки сточных вод реагентом составляет 10 мин.

Электрохимический метод                                                   

Электрохимический метод очистки хромсодержащих сточных вод заключается в обработке этих стоков в межэлектродном пространстве при использовании растворимых стальных анодов. Восстановление шестивалентного хрома производится в кислой среде за счет окисления двухвалентного железа, образующегося при растворении стального анода под действием электрического тока.

Fe0 - 2e à Fe2+

Cr2O72- + Fe2+ + h3SO4 à Cr2(SO4)3+ Fe2(SO4)3 + h3O

Применение электрохимического метода более целесообразно в условиях острого дефицита производственных площадей, при необходимости предочистки и снижения солесодержания промстоков перед ионным обессоливанием, при расходе промстоков менее 50 м3/ч, при наличии листовой стали или металлического скрапа. Содержание шестивалентного хрома не должно превышать 100 мг/л, в отдельных случаях 150 мг/л.

При восстановлении шестивалентного хрома электрохимическим способом минерализованность сточных вод снижается за счет восстановления хроматов и бихроматов.

Основные технологические параметры восстановления шестивалентного хрома рН                                                                                             <3                                                                                                                             

Удельное сопротивление промстоков, кОм*см                     >1                                         

Межэлектродный зазор, мм                                                    5-10                                                                             

Высота электродов, мм                                                           500-1000

Толщина листовых электродов, мм                                       30-60                                                              

Удельный расход железа, г/г                                                  5                           

Анодная плотность тока, А/м2                                               150-300                          

Расчетная скорость потока, м/с                                              0,01                         

Удельный расход электричества , А-ч/г Сr6+                         4                           

Период между переполюсовками, ч                                       2                          

Время пребывания сточных вод в аппарате, мин.                 3                          

Величину тока следует определять:

Icup = qw * Cen * qcur

где: qw -производительность аппарата, м3/ч; Cen -исходная концентрация удаляемого шестивалентного хрома, мг/л; qcur  - удельный расход электричества , необходимого для удаления 1 г шестивалентного хрома, А*ч/г

Общую поверхность анодов надлежит определять по формуле

fpl = Icup / ian

где: ian - анодная плотность тока, А/м2

Анодная плотность тока назначается в зависимости от суммарной концентрации ионов тяжелых металлов:

Суммарная концентрация металлов, мг/л

Плотность тока, А/м2

До 80

150

80 – 100

200

100 – 150

250

150 – 200

300

Поверхность одного электрода определяется по формуле:

fpl'=2* bpl*hpl

vunivere.ru

Способ очистки сточных вод от шестивалентного хрома

Использование: очистка хромсодержащих стоков в химической, металлургической и машиностроительной отраслях промышленности. Сущность изобретения: проводят восстановление шестивалентного хрома в трехвалентный в кислой среде с последующим осаждением его соединений щелочью в две стадии, причем первую стадию проводят водными растворами восстановителя, а вторую стадию путем добавления сухого реагента к фильтрату первой стадии, при этом первую стадию ограничивают степенью восстановления не более 98,4%. Способ позволяет при сниженном расходе реагентов обеспечить высокую степень очистки и упростить отделение шлама от очищенных стоков. 1 з.п. ф-лы, 1 табл. 4 пр.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к области очистки сточных вод от хрома и может быть использовано в химической, металлургической и машиностроительной отраслях промышленности. Среди известных способов очистки сточных вод от хрома наиболее широкое применение нашли способы реагентной очистки, т.к. они обеспечивают высокую степень очистки, просты в эксплуатации, удобны для автоматизации. Основная задача при реагентной очистке хромсодержащих стоков является восстановление шестивалентного хрома в трехвалентный хром. Так как соединения последнего значительно менее токсичны и наиболее полно удаляются в щелочной среде в виде труднорастворимого гидроксида хрома (III). Учитывая очень низкую растворимость Сr(OH)3 в воде (ПРСr/ОН)3 1 х 10-30, можно обеспечить остаточную концентрацию соединений хрома в очищенных реагентным методом хромсодержащих стоках ниже предельно допустимой концентрации Сr(III) для открытых водоемов. Недостатком реагентных способов очистки хромсодержащих стоков является большой расход реагентов для очистки, значительно (в несколько раз) превышающий стехиометрический расход [1] Наиболее близким по технической сущности и достигаемому эффекту является способ обезвреживания хромсодержащих сточных вод, основанный на восстановлении шестивалентного хрома в трехвалентный водным раствором сульфита натрия в кислой среде с последующим осаждением гидроокиси хрома щелочью [2] Недостатком указанного способа является большой расход реагентов, так как требуется 5-8-кратный избыток для достижения высокой степени очистки, особенно при очистке концентрированных (порядка 300 г/л) стоков, а также имеют место трудности разделения шлама от очищенных стоков. Задачей изобретения является снижение расхода реагентов для очистки и упрощение стадии отделения шлама от очищенных стоков. Поставленная цель достигается за счет того, что восстановление шестивалентного хрома в трехвалентный и отделение твердой фазы проводят в две стадии, причем первую стадию проводят водными растворами реагентов, а вторую стадию проводят путем добавления сухого реагента к фильтрату после отделения осадка первой стадии, при этом первую стадию ограничивают степенью восстановления не более 98,4% Предлагаемый способ очистки хромсодержащих стоков позволяет упростить стадию восстановления и отделения с осадком хрома, что обеспечивает при меньшем расходе реагентов достичь высокой степени очистки. Указанный эффект достигается за счет того, что в отличие от известного способа выделение соединений хрома из сточных вод в две стадии позволяет при более экономичном расходе реагентов обеспечить лучшую технологию отделения осадка труднорастворимых соединений хрома. Доказано, что на второй стадии (при небольшой концентрации примесей хрома) добавление реагента в виде сухой соли также обеспечивает протекание процесса при меньшем избытке реагента. При изменении степени очистки сточных вод от соединений хрома на первой стадии за установленный предел приводит к потере достигаемого эффекта. Так, при степени очистки на I стадии ниже 98,4% снижения расхода реагента не наблюдается, а при степени очистки выше 98,4% требуется повышение избытка реагента, следовательно,увеличивается его расход. Пример 1. Очистку проводят в две стадии. Состав исходного неочищенного стока следующий,г/л: СrO3 215,8, Сr2O3 5,86 I стадия. Для очистки к 25 см3 неочищенного стока добавляют 25 мл дистиллированной воды и 75 см3 30%-ного водного раствора Na2SO3 и подогревают до 60oС, затем приливают 5 см3 10% -го раствора NaOH. Осадок отфильтровывают, промывают водой. II стадия. К 25 см3 фильтрата первой стадии приливают 17 см 3 3%-ного раствора h3SO4 до рН 4-5, затем добавляют при перемешивании 7 г сухой соли Na2SO3 и приливают 15 см3 5%-ного раствора Са(OH)2, образовавшийся осадок отфильтровывают. В фильтрате определяют содержание шестивалентного и трехвалентного хрома. Соединение хрома в фильтрате отсутствуют. Степень очистки по отношению к исходному стоку и расход реагентов приведены в таблице. Пример 2 (прототип). Очистку проводят в одну стадию водными растворами реагентов. Для очистки исходный сток берут аналогично примеру 1 состава. К 25 см3 неочищенного стока добавляют 90 см 30%-ного водного раствора Na2SO3, приливают 5 см3 10%-го раствора NaOH, подогревают до 60oС, образовавшийся осадок отфильтровывают, промывают водой. В фильтрате определяют содержание шестивалентного и трехвалентного хрома. Суммарная концентрация хрома в фильтрате 1,86 г/л. Степень очистки и расход реагентов приведены в таблице. Пример 3 (контрольный). Аналогично примеру 1, на второй стадии Na2SO3 добавляют в виде 30%-ного водного раствора. Пример 4 (контрольный). Аналогично примеру 3, избыток реагентов увеличен. Приведенные данные (таблица) показывают, что в предлагаемом способе (пример 1) по сравнению с прототипом (пример 2) достигается снижение расхода Na2SO3 на 26,5% при увеличении степени очистки с 98,4 до 100% Образовавшийся осадок легко отделяется. В примере 2 осадок трудно отфильтровывается. В контрольном примере 3, в котором процесс очистки разделен на 2 стадии (аналогично примеру 1), но при этом Na2SO3 на второй стадии применяют не в виде соли, а в виде 30%-ного водного раствора, не достигается полной очистки стока. При значительном увеличении избытка реагентов (пример 4) полную очистку достигают, но даже при двухстадийной очистке в случае использования водного раствора Na2SO3 на второй стадии вместо соли расход реагентов увеличивается.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ очистки сточных вод от шестивалентного хрома путем его восстановления в трехвалентный водным раствором восстановителя в кислой среде с последующим осаждением соединений хрома щелочью и отделением образующегося осадка от фильтрата, отличающийся тем, что процесс очистки проводят в две стадии, причем на первой стадии используют водный раствор восстановителя, а восстановлением шестивалентного хрома на второй стадии осуществляют путем добавления сухой соли восстановителя к фильтрату первой стадии. 2. Способ по п.1, отличающийся тем, что первую стадию осуществляют до степени очистки 98,4%

bankpatentov.ru

Методы очистки сточных вод от соединений хрома

    МЕТОДЫ ОЧИСТКИ сточных вод от СОЕДИНЕНИЙ ХРОМА [c.269]

    Обезвреживание хромсодержащих сточных вод на машиностроительных предприятиях является одной из наиболее актуальных задач. Распространенным методом их очистки является реагентный метод, основанный на восстановлении соединений хрома (У1) в кислых растворах различными восстановителями до соединения хрома.(Ш) и полного его осаждения в виде гидроокиси при дальнейшей нейтрализации. Установлено [I - б], что лучшим восстановителем является бисульфит натрия. [c.58]

    Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]

    Электрохимический метод очистки от соединений шестивалентного хрома проводится путем электролиза сточной воды с электродами из стали при плотности тока 1 А/дм . Ионы железа, образующиеся за счет растворения анода, восстанавливают ионы Сг + до Сг +  [c.216]

    Очистка сточных вод электродиализом основана на разделении под действием электродвижущей силы анионов и катионов. В электродиализаторе имеются анионо- и катионообменные мембраны. Метод широко применяется для опреснения соленых йод. С его помощью очищают сточные воды от соединений фтора и хрома при степени обессоливания 75—80 %, от радиоактивных загрязнений— при снижении активности на 99%. Срок службы мембраны зависит от загрязненности сточных вод взвешенными частицами и составляет 2—5 лет. [c.495]

    Очистку сточных вод, содержащих соединения хрома, можно производить также путем их последовательной фильтрации через анионит и катионит. Применение этого метода наиболее эффективно при обработке слабоконцентрированных стоков и в случаях повышенных требований к степени их очистки. Ионитовые фильтры могут применяться также в качестве последней ступени очистки при обработке сточных вод реагентами. [c.360]

    Исследования, проведенные в нашей стране, позволили впервые в мировой практике предложить способ биохимической очистки соединений шестивалентного хрома (хроматов и бихроматов), а также хлоратов и перхлоратов. Метод основан на способности специально выведенных микроорганизмов использовать соединения хрома при окислении органических веществ, содержащихся в сточных водах. При этом в нейтральной или слабощелочной среде происходит восстановление ионов шестивалентного хрома до трехвалентного, который осаждается в виде гидроокиси, а хлораты и перхлораты восстанавливаются до практически безвредных хлоридов. Степень очистки достигает 99,4%, остаточное содержание хрома в стоках не превышает 0,4 мг/л. Технологическая схема включает усреднение производст- [c.57]

    В Институте Водгео разработаны методы непосредственной очистки сточных вод от следующих вредных примесей грубодисперсных веществ, кислот, цианистых соединений, нефтепродуктов, иолов тяжелых металлов, шестивалентного хрома, окисленного керосина и уайт-спирита и прочих флотореагентов. [c.205]

    Выбор метода очистки зависит от состава и режима поступления сточных вод, концентрации загрязнений, необходимости и возможности повторного использования очищенной воды [90, 102]. Особое внимание при этом уделяется электрохимическим методам очистки, которые можно разделить на четыре основные категории электрокоагуляция с использованием растворимых железных анодов, для очистки промывных сточных вод, содержащих соединения шестивалентного хрома и другие ионы тяжелых металлов  [c.232]

    В современных станциях очистки сточных вод гальванических отделений наиболее часто применяют третий метод обработки цианистых сточных вод [40, 71—73]. Гидролиз цианатов до солей ам1Мония преимущественно проводят, добавляя к сточным водам соответствующее количество кислоты или кислых сточных вод, например содержащих соединения хрома (Сгз+). На рис. 64 приведена система автоматического регулирования обработки указанных сточных вод в условиях нериодической работы реакционных резервуаров, а на рис. 65 — при непрерывном протекании сточных вод. [c.183]

    Очистка производственных сточных вод методом ионного обмена позволяет извлекать и утилизировать ценные примеси (соединения мышьяка, фосфора, а также хром, цинк, свинец, медь, ртуть и другие металлы), ПАВ и радиоактивные вещества, очищать сточную воду до предельно допустимых концентраций с последующим ее использованием в технологических процессах или в системах оборотного водоснабжения. [c.150]

    Постоянные компоненты сточных вод гальванических цехов — соединения тяжелых металлов (меди, хрома, никеля, кадмия и др.). Из-за высокой токсичности содержание их в сточных водах, поступающих на сооружения биологической очистки, строго ограничивается. Предельно допустимое содержание при сбраживании осадка (в мг Л ) Си + —25, Сг + — 3, Сг + — 25. При биологической очистке жидкой фазы сточных вод ионов Си + не должно быть больше 0,4—0,5 мг-л Сг + и Сг + — не больше 2,7 мг-л К Обычно содержание соединений тяжелых металлов в сточных водах не превышает нескольких десятков миллиграммов на литр, что затрудняет их очистку обычными методами осаждения. [c.115]

    Неконтролируемые промышленные сточные воды могут содержать агрессивные или токсичные соединения. Например, присутствие соединений серы и высокая температура сточной воды могут способствовать бактериальному образованию сульфатов, вызывающих коррозию шелыги канализационных труб. Кислые стоки вызывают коррозию нижней части труб, и если они разбавлены водой не в должной степени, то могут нарушить процесс очистки. Токсичные ионы металлов, например хрома и цинка, и некоторые органические вещества даже в небольших концентрациях могут привести к ингибированию б1Иологических процессов очистки воды и анаэробного сбраживания осадков. Растворенные соли и вещества, придающие воде цвет и запах, только частично удаляются традиционными методами очистки. Защита природного водоема от таких загрязнений сводится к локальной очистке стоков на промышленном предприятии вместо сброса их в канализационную систему. Примерами таких стоков могут служить отработанные соляные растворы, красители и фенолы. Там, вде производственные стоки нестабильны, целесообразно установить усредняющие резервуары для предотвращения импульсных нагрузок на очистные сооружения. В дополнение к нейтрализации и разбавлению стоков предварительная обработка посредством усреднения способствует стабилизации расхода и предотвращению внезапных гидравлических нагрузок повышенной интенсивности. [c.360]

    Этим методом очищают сточные воды от соединений фтора к хрома [302, 303]. Очистке от фтора подвергали сточные водь криолитового производства, содержащие 2—7 г/л фтор-иона а также Na+, SOf", Fe3+, SiO2. Очистку проводили в многокамерном электродиализаторе фильтр-прессного типа с мембранами типа МК-40 и МА-40. При однократном прохождении сточных BO.D через электродиализатор степень обессоливания достигала 75— 80%, однако в очищенной воде содержалось 0,8 г/л и более фтора Снижение концентрации фтора в исходной воде до 0,5—1,5 г/л позволяет получать очищенную воду, содержащую 0,16—0,5 г/л фтора. Доочистку сточных вод проводили на ионитовых фильтрах. Содержание фтора в очищенной воде не превышало 5 мг/л. [c.178]

    Путем проведения некоторых технологических мероприятий, а также применания различных методов очистки можно предохранить водоемы от загрязнений соединениями хрома и вернуть в производство значительное количество ценного сырья, теряемого со сточными водами. [c.20]

    Обратим внимание на биотехнологические методы очистки стоков, содержащих ионы тяжелых цветных металлов (ИТМ). Вероятно, первые разработки в этом направлении были осуществлены в НПО Союз под руководством академика Б. П. Жукова в конце шестидесятых годов прошлого века. Бьши найдены микроорганизмы, которые при определенных анаэробных условиях в течение только одного часа очищали стоки ог соединений шестивалентного хрома. Подобная технология была внедрена на очистных сооружениях автозавода Коммунар (г Запорожье). Аналогичные работы проводились в Уфе, в нефтяном институте (Б. Е. Губин, Г. Ф. Смирнова и др.). Разработанная технология биохимической очистки производственных сточных вод (гальванических, травильных и др.) позвопяет удалить ИШ, органические и неорганические соединения, понижать солесодержание. Метод основан на применении комплекса гетеротрофных микроорганизмов, основой которых являются суль- [c.393]

    При содержании в сточных водах легко восстанавливаемых соединений меди, хрома, мьииьяка, ртути применяют методы восстановительной очистки. [c.124]

    Предлагавшееся тогда разделение сточных вод промышленных предприятий на две группы — условно чистые и грязные воды, без учета возмол сности выделения из последних наиболее концентрированных вод и без извлечения из них в целях утилизации ценных примесей, в большинстве случаев повышало стоимость канализационных устройств и осложняло их эксплуатацию. Хотя выделение условно чистых вод и самостоятельное отведение кх за пределы промышленного предприятия приводит к уменьшению количества грязных вод, однако концентрация последних соответственно повышается. Нередко она становится такой, что затр дняет очистку этих вод, особенно в тех случаях, когда требуется применение методов биологической очистки. Последняя, как известно, достаточно требовательна к начальной концентрации как органических вегцеств, так и особенно токсических соединений. Так, например, при наличии в них сравнительно небольших количеств (0,1—0,5 мг л) ядовитых вешеств, часто встречающихся в промышленных стоках (свинца, шестивалентного хрома, мышьяка и т. д.), биологический процесс резко нарушается замедляется он и тогда, когда общая сумма органических загрязнений, выраженная БПК, превышает 1 ООО лгг/л. [c.10]

    Очистка производственных сточных вод при помощи ионного обмена. Метод ионного обмена применяется для обессоливания воды, извлечения из сточных вод ядовитых примесей (цианистых и роданистых соединений, мышьяка и др.), ионов металлов (хрома, никеля, цинка и др.), разделения редкоземельных элементов и т. д. Для этих целей применяется сульфоуголь, ионообменные смолы. Ионообменные синтетические смолы делятся на две основные группы катиониты (КУ-1, КУ-2 и др.) и аниониты (АНМВЛ-6ТЭ, АН-2Ф и др.). [c.566]

chem21.info

Способ очистки сточных вод от ионов хрома (vi)

Изобретение относится к способам очистки сточных вод от ионов хрома (VI) адсорбцией и может найти применение в цветной и черной металлургии, в производстве хрома и его соединений, для очистки стоков гальванических, кожевенных производств. Способ очистки сточных вод от ионов хрома (VI) включает пропускание сточных вод через слой адсорбента при 0,5≤pH≤0,9. В качестве адсорбента используют углеродный адсорбент размером частиц 0,5-2 мм при суммарной пористости не менее 0,5 см3/г и удельной поверхности не менее 500 м2/г, полученный на основе длиннопламенного каменного угля. Использование заявляемого изобретения позволяет производить очистку сточных вод от соединений хрома (VI) в одну стадию (без восстановления до хрома (III)) с применением доступных и недорогих адсорбентов, не требующих дополнительной обработки и обеспечивающих полное количественное удаление ионов хрома (VI). Технический результат заключается в повышении степени очистки сточных вод от ионов хрома (VI) за счет их адсорбции на углеродном адсорбенте. 4 ил., 1 табл., 4 пр.

 

Изобретение относится к способам очистки сточных вод от ионов хрома (VI) адсорбцией и может найти применение в цветной и черной металлургии, в производстве хрома и его соединений, в других производствах, использующих хром, для очистки стоков гальванических, кожевенных и других производств.

Известен способ удаления хрома (VI) из водного раствора (RU №2110481, МПК C02F 1/28, C02F 1/62, C02F 1/76, опубликовано 10.05.1998), включающий обработку раствора до оптимальной величины pH, контакт раствора и адсорбента. В качестве адсорбента и/или восстановителя используют семена люцерны и/или клевера.

Общими признаками заявляемого изобретения с аналогом являются обработка раствора до оптимальной величины pH и контакт раствора и адсорбента.

Также известен способ удаления хрома (VI) из водного раствора (RU №2129096, МПК C02F 1/28, C02F 1/62, опубликовано 20.04.1999). По данному способу удаление хрома (VI) из водного раствора осуществляют с использованием семян фасоли, причем кожица фасоли преимущественно сорбирует хром (VI), а ее семядоли - хром (III).

Общими признаками заявляемого изобретения с аналогом являются обработка раствора до оптимальной величины pH и контакт раствора и адсорбента.

Недостатками описанных выше способов-аналогов являются: низкая эффективность (семена люцерны или клевера) и дороговизна в связи с высокой ценой применяемых пищевых материалов в качестве сорбентов-восстановителей (фасоль).

Известен способ адсорбции хрома (VI) на активированном угле (RU №2091318, МПК C02F 1/28, 27.09.1997), включающий обработку адсорбента и раствора, контакт активированного угля и раствора, адсорбцию на активированном угле в слабокислой или кислой среде при регулировании pH непрерывной нейтрализацией раствора до оптимальных значений, причем в процессе адсорбции отклонение величины pH адсорбции от оптимального значения поддерживают согласно зависимости: ΔpH=ΔpH0·exp(-k·tm), где ΔpH - отклонение величины pH от оптимального значения; t - время адсорбции; ΔpH0 - максимальное отклонение величины pH от оптимального значения в начальный момент времени; k, m - константы, определяемые по экспериментальным данным.

Общими признаками заявляемого изобретения с аналогом являются обработка раствора до оптимальной величины pH и контакт раствора и адсорбента.

Недостатком способа является необходимость регулирования процесса, осуществляя непрерывную нейтрализацию раствора до оптимальных значений pH добавлением определенного количества нейтрализатора.

Наиболее близким к изобретению и принятым за прототип является способ очистки сточных вод от ионов тяжелых металлов и шестивалентного хрома (RU №2051112, МПК C02F 1/28, опубликовано 27.12.1995). По данному способу извлечение ионов тяжелых металлов и шестивалентного хрома из питьевой и сточных вод промышленных предприятий проводят с использованием в качестве адсорбента цеолита, предварительно обработанного щавелевой кислотой с концентрацией 0,05-0,1 моль/л. Для осуществления способа сточные воды, содержащие ионы хрома (VI) и другие тяжелые металлы, пропускают через слой цеолита в присутствии минеральной кислоты при pH 1-2.

Данный способ позволяет адсорбировать ионы цинка, меди, железа и хрома. Соединения хрома (VI) в воде находятся в составе анионов Cr2O72− и CrO42− (в кислой и щелочной средах соответственно). Общими признаками заявляемого изобретения с прототипом являются обработка раствора до оптимальной величины pH и контакт раствора и адсорбента.

Недостатком способа является то, что шестивалентный хром не сорбируется природными цеолитами и последние требуют обработки их щавелевой кислотой, что приводит к существенным затратам времени и дополнительному расходу реагентов.

Задача, на решение которой направлено заявляемое изобретение, заключается в создании способа очистки сточных вод от соединений хрома (VI) в одну стадию (без восстановления до хрома (III)) с применением доступных и недорогих адсорбентов, не требующих дополнительной обработки и обеспечивающих полное количественное удаление ионов хрома (VI).

Технический результат заявляемого изобретения заключается в повышении степени очистки сточных вод от ионов хрома (VI) за счет их адсорбции на углеродном адсорбенте.

Указанный технический результат достигается тем, что в способе очистки сточных вод от ионов хрома (VI), включающем пропускание сточных вод через слой адсорбента при 0,5≤pH≤0,9, согласно изобретению в качестве адсорбента используют углеродный адсорбент с размером частиц 0,5-2 мм при суммарной пористости не менее 0,5 см3/г и удельной поверхности не менее 500 м2/г, полученный на основе длиннопламенного каменного угля.

Повышение эффективности очистки сточных вод от ионов хрома (VI) по заявляемому способу происходит за счет использования углеродного адсорбента, который обладает большой сорбционной емкостью и позволяет адсорбировать хром (VI) без стадии его восстановления до хрома (III). Для осуществления способа сточные воды, содержащие ионы хрома, пропускают через слой адсорбента при 0,5≤pH≤0,9. Способ позволяет повысить степень извлечения ионов хрома (VI) до 100%, при этом извлекаются другие ионы тяжелых металлов и достигается высокая степень очистки воды.

Применяемый по данному способу углеродный адсорбент не требует дополнительной обработки и обеспечивает полное количественное удаление ионов хрома (VI) из воды.

Предлагаемый способ отличается от прототипа тем, что в качестве адсорбента используют углеродный адсорбент, полученный на основе длиннопламенных каменных углей. Кроме того, по заявляемому способу исключается стадия восстановления ионов хрома (VI) до ионов хрома (III) с последующим осаждением, также не требуется предварительная обработка адсорбента.

Наличие отличительных признаков позволяет сделать вывод о соответствии заявляемого изобретения условию патентоспособности «новизна».

Из уровня техники известно использование активированных углей для извлечения ионов хрома (VI) из водных растворов, однако не известно использование углеродного адсорбента, полученного на основе длиннопламенных каменных углей, для удаления ионов хрома (VI) из водных растворов.

Подготовка углеродного адсорбента путем его измельчения до размера частиц 0,5-2 мм при суммарной пористости не менее 0,5 см3/г и удельной поверхности не менее 500 м2/г позволяет углеродному адсорбенту адсорбировать ионы хрома (VI), исключая стадию восстановления хрома (VI) до трехвалентного состояния, что не следует явным образом из известного уровня техники и доказывает соответствие заявляемого изобретения условию патентоспособности «изобретательский уровень».

На фиг. 1 приведена зависимость величины адсорбции от кислотности среды. На фиг. 2 приведена кинетическая кривая адсорбции ионов хрома (VI) на углеродном сорбенте с размером частиц 0,5-2 мм, удельной поверхностью не менее 500 м2/г, при кислотности среды 0,5-0,9. На фиг. 3 приведена кинетическая кривая адсорбции ионов хрома (VI) на углеродном сорбенте с размером частиц 2-3 мм, удельной поверхностью 400 м2/г, при кислотности среды 0,5-0,9. На фиг. 4 приведена кинетическая кривая адсорбции ионов хрома (VI) на углеродном сорбенте с размером частиц 3-4 мм, удельной поверхностью 300 м2/г, при кислотности среды 0,5-0,9.

Для определения оптимальных условий сорбции проводились опыты при разных значениях pH, разных навесках адсорбента, в различные моменты времени. В каждом опыте рассчитывалась величина предельной адсорбции А, моль/1 г сорбента.

Из полученных данных следует, что оптимальное значение pH растворов составляет 0,5-0,9. Уменьшение pH не позволяет достичь оптимальной величины предельной сорбции, а увеличение pH является нецелесообразным, так как приводит к снижению величины предельной сорбции.

Адсорбцию осуществляли в статических условиях из 100 мл исходного раствора K2CrO4 с концентрацией ионов хром (VI) 200 мг/л. Исходный раствор готовили растворением в воде химически чистой соли K2CrO4; концентрацию металла определяли на фотоколориметре КФК-3, кислотно-основные характеристики раствора контролировали pH-метром. Показатели адсорбции представлены в виде кинетической зависимости процесса сорбции ионов хрома (VI).

Пример 1 (фиг. 1). Сорбцию из растворов осуществляли при разных значениях рН. Навеску адсорбента массой 1 г помещали в раствор соли разной кислотности, концентрация соли металла в растворе равна 100 мг/л. Затем перемешивали в течение времени до наступления равновесия. Величину рН контролировали рН-метром. Выявлено, что оптимальное значение рНадс составляет 0,5-0,9. На графике (фиг. 1) представлена зависимость сорбционной емкости сорбента с размером частиц 3,0-4,0 мм по хрому (VI) от разных значений рН.

Пример 2 (фиг. 2). Сорбцию ионов хрома (VI) из раствора осуществляли в сильнокислой среде при рН 0,5-0,9. Навеску сорбента массой 1 г помещали в раствор соли хрома (VI), перемешивали в течение времени. Начальная концентрация ионов хрома (VI) в растворе равна 200 мг/л. Размер частиц сорбента составлял 0,5-2,0 мм, удельная поверхность равна не менее 500 м2/г. На графике (фиг. 2) представлены кинетические кривые сорбции ионов хрома (VI) при заданной кислотности, размере частиц и удельной поверхности сорбента.

Пример 3 (фиг. 3). Сорбцию ионов хрома (VI) из раствора проводили в сильнокислой среде при рН 0,5-0,9. Навеску сорбента массой 1 г помещали в раствор соли хрома (VI), перемешивали в течение времени. Начальная концентрация ионов хрома (VI) в растворе равна 200 мг/л. Размер частиц сорбента составлял 2,0-3,0 мм, удельная поверхность равна 400 м2/г. На графике (фиг. 3) представлены кинетические кривые сорбции хрома (VI) при заданной кислотности, размере частиц и удельной поверхности сорбента.

Пример 4 (фиг. 4). Сорбцию ионов хрома (VI) из раствора проводили в сильнокислой среде при рН 0,5-0,9. Навеску сорбента массой 1 г помещали в раствор соли хрома (VI), перемешивали в течение времени. Начальная концентрация ионов хрома (VI) в растворе равна 200 мг/л. Размер частиц сорбента составлял 3,0-5,0 мм, удельная поверхность равна 300 м2/г. На графике (фиг. 4) представлены кинетические кривые сорбции хрома (VI) при заданной кислотности, размере частиц и удельной поверхности сорбента.

Адсорбция хрома (VI) предлагаемым способом завершалась за 2 часа.

Из полученных данных следует, что оптимальное значение pH растворов варьируется в пределах 0,5-0,9, оптимальный размер частиц составляет 0,5-2,0 мм, а удельная поверхность должна составлять не менее 500 м2/г. Уменьшение pH не позволяет достичь оптимальной величины предельной сорбции, а увеличение рН является нецелесообразным, так как приводит к снижению величины предельной сорбции. Уменьшение размера частиц способствует повышению адсорбции. Однако снижение размера частиц сорбента до дисперсности менее 0,5 мм нецелесообразно, так как частицы с размером менее 0,5 мм представляют собой пыль, что представляет определенную преграду для измерения оптической плотности раствора и извлечения сорбента из раствора.

В таблице 1 приведены результаты очистки сточных вод от ионов тяжелых металлов по прототипу и по заявляемому способу.

Предлагаемый способ по сравнению с прототипом позволяет адсорбировать хром (VI) на дешевом адсорбенте с высокой степенью извлечения и с большой скоростью. Процесс экологически чист, эффективен; раствор не загрязняется посторонними катионами. За счет большой скорости адсорбции не успевают развиться окислительно-восстановительные процессы, приводящие к деструкции адсорбента.

Как видно из таблицы 1, по заявляемому способу очистка сточных вод от ионов тяжелых металлов проходит более эффективно, чем по прототипу.

Использование заявляемого изобретения позволяет производить очистку сточных вод от соединений хрома (VI) в одну стадию (без восстановления до хрома (III)) с применением доступных и недорогих адсорбентов, не требующих дополнительной обработки и обеспечивающих полное количественное удаление ионов хрома (VI).

Способ очистки сточных вод от ионов хрома (VI), включающий пропускание сточных вод через слой адсорбента при 0,5≤pH≤0,9, отличающийся тем, что в качестве адсорбента используют углеродный адсорбент с размером частиц 0,5-2 мм при суммарной пористости не менее 0,5 см3/г и удельной поверхности не менее 500 м2/г, полученный на основе длиннопламенного каменного угля.

www.findpatent.ru