• Главная

Хром и кислород (стр. 2 из 2). Кислород хром


Доклад - Хром и кислород

Хром ( Chromium ). Хром содержится в земной коре в количестве 0,02%. В природе он встречается главным образом в виде хромистого железняка FeO∙Cr2 O3, богатые месторождения которого имеются в Казахстане и Урале.

При восстановления хромистого железняка углём появляется сплав хрома с железом–феррохром, который непосредственно используется в металлургической промышленности при производстве хромистых сталей. Для получения чистого хрома сначала получают оксид хрома (III), а затем восстанавливают его алюминотермическим способом.

Хром представляет собой твёрдый блестящий металл, плавящийся при 1890˚С; плотность его 7,19 г/см3. При комнатной температуре хром стоек к воде и к воздуху. Разбавленные серная и соляная кислоты растворяют хром с выделением водорода. В холодной концентрированной азотной кислоте хром нерастворим и после обработки ею становится пассивным.

Металлический хром используется для хромирования, а также в качестве одного из важнейших компонентов легированных сталей. Введение хрома в сталь повышает её устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Кроме того, хромистые стали, обладают повышенной твёрдостью. Хром входит в состав нержавеющих, кислотоупорных, жаропрочных сталей.

Хром образует три оксида: оксид хрома ( II), илизакись хрома, CrO, имеющий основной характер, оксид хрома ( III), или окись хрома, Cr2 O3, проявляющий амфотерные свойства, и окись хрома( VI), или хромовый ангидрид, CrO3 – кислотный оксид. Соответственно этим трём оксидам известны и три ряда соединений хрома.

Соединения хрома ( II). При растворении хрома в соляной кислоте получается раствор голубого цвета, содержащий хлорид хрома ( II) CrCl2. Если к этому раствору прилить щелочи, то выпадает желтый осадок – гидроксид хрома ( II) Cr(OH)2. Соединения хрома (II)неустойчивы и быстро окисляются кислородом воздуха в соединения хрома (III).

Соединения хрома ( III). Оксид хрома ( III), Cr2 O3 представляет собой тугоплавкое вещество зелёного цвета, применя6емое под названием зелёного крона для приготовления клеевой и масляной красок. При сплавлении с силикатами оксид хрома (III) окрашивает их в зелёный цвет и поэтому служит для окраски стекла и фарфора. Cr2 O3 входит также в состав полирующих средств.

Гидроксид хрома ( III) Cr(OH)3 выпадает в виде синевато-серого осадка при действии щелочей на соли хрома (III):

Cr3+ +3OH- →Cr(OH)3 ↓

Подобно гидроксидам алюминия и цинка, он имеет амфотерный характер и растворяется в кислотах с образованием солей хрома (III), а в щелочах – изумрудно-зелёных растворов хримотов, например:

Cr(OH)3 + 3NaOH→Na3 [Cr(OH)6 ]

или

Cr(OH)3 +3OH- →[Cr(OH)6 ]3-

Хромиты, полученные сплавлением Cr2 O3 с оксидами других металлов и известные главным образом для двухвалентных металлов, имеют состав, отвечающий формуле М(CrO2 )2, и представляют собой соли метахромистой кислоты HcrO2. к ним относится и природный хромистый железняк Fe(CrO2 )2 .

Из солей хрома (III) самой распространённой является двойная соль хрома и калия – хромокалиевые квасцы KCr(SO4 )2 ∙12h3 O, образующие сине-фиолетовые кристаллы.

Соли хрома (III) во многом похожи на соли алюминия. В водных растворах они сильно гидролизованы и легко превращаются в основные соли. Со слабыми кислотами хром (III), подобно алюминию, солей не образует.

Соединения хрома ( VI). Важнейшими соединениями хрома (VI) являются триоксид хрома, или хромовый ангидрид, CrO3 и соли отвечающих ему кислот – хромовой h3 CrO4 и двухромовой h3 CrO7. Обе кислоты существуют только в водном растворе и при попытках выделить их из раствора, распадаются на хромовый ангидрид и воду; но соли их достаточно стойки. Соли хромовой кислоты называются хроматами, а двухромовой – бихроматами или дихроматами .

Почти все хроматы имеют желтую окраску. Некоторые из них применяются в качестве красок. Например, нерастворимый в воде хромат свинца PbCrO4, под названием желтый крон, служит для приготовления желтой масляной краски.

При подкислении раствора какого-нибудь хромата, например, хромата калия K2 CrO4, чисто-желтая окраска раствора сменяется на оранжевую вследствие перехода ионов CrO2-4 в ионы Cr2 O2-7. Из полученного раствора может быть выделена соль двухромовой кислоты – двухромат калия K2 Cr2 O7 – в виде оранжево-красных кристаллов. Реакция превращения хромата в дихромат выражается уравнением:

2CrO2-4 +2H+ ↔Cr2 O2-7 +h3 O

Реакция обратима. Это значит, что при растворении дихромата в воде всегда образуется некоторое, хотя и незначительное, количество ионов Н+ и CrO2-4; поэтому раствор дихромата имеет, кислую реакцию. Если к раствору дихромата прибавлять щелочь, то гидроксид-ионы будут связывать находящиеся в растворе ионы водорода, равновесие смещается влево и в результате дихромат превращается в хромат. Таким образом, в присутствии избытка гидроксид-ионов в растворе практически существуют только ионы CrO2-4, т. е. хромат, а при избытке ионов водорода – ионы Cr2 O2-7, т. е. дихромат.

Хроматы щелочных металлов получаются путём окисления соединения хрома (III) в присутствии щелочи. Так, при действии брома на раствор хромита калия образуется хромат калия по уравнению:

2K3 [Cr(OH)6 ]+3Br2 +4KOH→2K2 CrO4 +6KBr+8h3 O

О происходящем окислении можно судить по тому, что изумрудно-зелёная окраска раствора хромита переходит в ярко-желтую.

Хроматы могут быть получены также сплавлением Cr2 O3 со щелочью в присутствии какого-нибудь окислителя, например хлората калия:

Cr2 O3 +4KOH+KClO3 →2K2 CrO4 +KCl+2h3 O

Хроматы и дихроматы – сильные окислительные. Поэтому ими широко пользуются для окисления различных веществ. Окисление производится в кислом растворе и обычно сопровождается резким изменением окраски (дихроматы окрашены в оранжевый цвет, а соли хромата (III) – в зелёный или зеленовато-фиолетовый).

Мы видели, что в кислых и в щелочных растворах соединения хрома (III) и хрома (VI) существует в разных формах: в кислой среде в виде ионов Cr3+ или Cr2 O2-7, а в щелочной – в виде ионов [Cr(OH)6 ]3- или CrO2-4. Поэтому взаимопревращение соединений хрома (III) и хрома (VI) протекает по-разному в зависимости от реакции раствора. В кислой среде устанавливается равновесие

Cr2 O2-7 +14H+ +6eˉ↔2Cr3+ +7h3 O

а в щелочной

[Cr(OH)6 ]3- +2OH- ↔CrO2-4 +4h3 O+3eˉ

Однако и в кислой, и в щелочной среде окисления хрома (III)приводит к уменьшению pH раствора; обратный же процесс – восстановление хрома (VI) – сопровождается увеличением pH. Поэтому, в соответствии с принципом Ле Шарля, при повышении кислотной среды равновесие смещается в направлении восстановления хрома (VI), а при уменьшении кислотности – в направлении окисления хрома (III). Иначе говоря, окислительные свойства соединений хрома (VI) наиболее сильно выражены в кислой среде, а восстановительные свойства соединений хрома (III) – в щелочной. Именно поэтому, как указывалось выше, окисление хромитов в хроматы осуществляют в присутствии щелочи, а соединения хрома (VI) применяют в качестве окислителей в кислых растворах.

Приведём несколько примеров окислительно-восстановительных реакций, протекающих при участии дихроматов.

1. При пропускании сероводорода через подкисленный серной кислотой раствор дихромата оранжевая окраска раствора переходит в зелёную и одновременно жидкость становится мутной вследствие выделения серы:

K2 Cr2 O7 +3h3 S+4h3 SO4 →Cr2 (SO4 )3 +3S↓+K2 SO4 +7h3 O

2. При действии концентрированной соляной кислоты на дихромат калия выделяется хлор и получается зелёный раствор, содержащий хлорид хрома (III):

K2 Cr2 O7 +14HCl→2CrCl3 +3Cl2 ↑+2KCl+7h3 O

3. Если пропускать диоксид серы через концентрированный раствор дихромата калия, содержащий достаточное количество серной кислоты, то образуются эквимолекулярные количества сульфатов калия и хрома (III):

K2 Cr2 O7 +3SO2 +h3 SO4 →Cr2 (SO4 )3 +K2 SO4 +h3 O

При выпаривании раствора из него выделяются хромокалиевые квасцы KCr(SO4 )2 ∙12h3 O. Этой реакцией пользуются для получения хромокалиевых квасцов в промышленности.

Наиболее важными из дихроматов являются дихромат калия K2 Cr2 O7 и дихромат натрия Na2 Cr2 O7 ∙2h3 O, образующие оранжево-красные кристаллы. Обе соли, известные также под названием хромпиков, широко применяются в качестве окислителей при производстве многих органических соединений, в кожевенной промышленности при дублении кож, в спичечной и текстильной промышленности. Смесь концентрированной серной кислоты с водным раствором дихромата калия или натрия под названием «хромовой смеси» часто применяется для энергичного окисления и для очистки химической посуды.

Все соли хромовых кислот ядовиты.

Триоксид хрома, или хромовый ангидрид, CrO3 выпадает в виде тёмно-красных игольчатых кристаллов при действии концентрированной серной кислоты на насыщенный раствор дихромата калия или натрия:

K2 Cr2 O7 +h3 SO4 →2CrO3 ↓+K2 SO4 +h3 O

Хромовый ангидрид принадлежит к числу наиболее сильных окислителей. Например, этиловый спирт при соприкосновении с ним воспламеняется. Производя окисление, хромовый ангидрид превращается в оксид хрома (III) Cr2 O3 .

Хромовый ангидрид легко растворяется в воде с образованием хромовой и двухромовой кислот.

Кислород ( Oxygenium ). Кислород – самый распространенный элемент земной коры. В свободном состоянии 20,9% кислорода находится в атмосферном воздухе, что составляет приблизительно 1/5 по объему.

Кислород входит в состав почти всех окружающих нас веществ. Так, например, вода, песок, многие горные породы и минералы, составляющие земную кору, содержат кислород. Кислород является также важной частью многих органических соединений, например белков, жиров и углеводов, имеющих исключительно большое значение в жизни растений, животных и человека. Общее количество кислорода в земной коре близко к половине её массы (около 47%).

Природный кислород состоит из трёх стабильных изотопов: 16 О (99,76%), 17 О (0,04%) и 18 О (0,2%).

Получение и свойства кислорода. Кислород был впервые получен в чистом виде К. В. Шееле в 1772г., а затем в 1774г. Д. Пристли (Англия), который выделил го из оксида ртути (II). Однако Пристли не знал, что полученный им газ входит в состав воздуха. Только спустя несколько лет Лавуазье, подробно изучивший свойства этого газа, установил, что он является составной частью воздуха.

В промышленности кислород получают из воздуха, который представляет собой смесь различных газов; основные компоненты в нём – азот и кислород. Для получения кислорода воздух под давлением сжижают. Так как температура кипения жидкого азота (-196˚С) ниже температуры кипения жидкого кислорода (-183˚С), то азот испаряется, а жидкий кислород остаётся. Газообразный кислород хранят в стальных баллонах под давлением 15 МПа. Важнейшим лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества кислорода можно также получать взаимодействием раствора перманганата калия с подкисленным раствором пероксида водорода или термическим разложением некоторых кислородсодержащих веществ, перманганата калия:

2KMnO4 →K2 MnO4 +MnO2 +O2 ↑

Кислород – бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха: масса 1 кислорода при нормальных условиях равна 1,43г, а 1 л воздуха 1,293 г. Кислород растворяется в воде, хотя и в небольших количествах: 100объёмов воды при 0˚С растворяют 4,9, а при 20˚С – 3,1 объёма кислорода.

Кислород образует двухатомные молекулы, характеризующиеся высокой прочностью. При комнатной температуре его диссоциация на атомы ничтожна; лишь при 1500˚С она становится заметной.

Магнитные свойства кислорода указывают на наличие в молекуле О2 двух неспаренных электронов. Эти электроны размещаются на разрыхляющих молекулярных π -орбиталях. Парамагнитность кислорода проявляется, в частности, в том, что жидкий кислород притягивается магнитом.

Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия, как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например, оксид азота(II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением .

Горение в чистом кислороде происходит гораздо энергичнее, чем в воздухе. Хотя при этом выделяется такое же количество теплоты как и при горении в воздухе, но процесс протекает быстрее и выделяющаяся теплота не тратится на нагревание азота воздуха; поэтому температура горения в кислороде значительно выше, чем в воздухе.

Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов – дыхание. Важное значение имеет и другой процесс, в котором участвует кислород, — тление и гниение погибших животных и растений; при этом сложные органические вещества превращаются в более простые (в конечном результате в CO2, воду и азот), а последние вновь вступают в общий круговорот веществ в природе.

Применение кислорода весьма многообразно. Его применяют для интенсификации химических процессов во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горелках. Кислород используют в медицине при затруднённом дыхании.

www.ronl.ru

Доклад: Хром и кислород

Хром ( Chromium ). Хром содержится в земной коре в количестве 0,02%. В природе он встречается главным образом в виде хромистого железняка FeO∙Cr2 O3 , богатые месторождения которого имеются в Казахстане и Урале.

При восстановления хромистого железняка углём появляется сплав хрома с железом–феррохром , который непосредственно используется в металлургической промышленности при производстве хромистых сталей. Для получения чистого хрома сначала получают оксид хрома (III), а затем восстанавливают его алюминотермическим способом.

Хром представляет собой твёрдый блестящий металл, плавящийся при 1890˚С; плотность его 7,19 г/см3 . При комнатной температуре хром стоек к воде и к воздуху. Разбавленные серная и соляная кислоты растворяют хром с выделением водорода. В холодной концентрированной азотной кислоте хром нерастворим и после обработки ею становится пассивным.

Металлический хром используется для хромирования, а также в качестве одного из важнейших компонентов легированных сталей. Введение хрома в сталь повышает её устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Кроме того, хромистые стали, обладают повышенной твёрдостью. Хром входит в состав нержавеющих, кислотоупорных, жаропрочных сталей.

Хром образует три оксида: оксид хрома ( II) , или закись хрома , CrO, имеющий основной характер, оксид хрома ( III) , или окись хрома , Cr2 O3 , проявляющий амфотерные свойства, и окись хрома( VI) , или хромовый ангидрид , CrO3 – кислотный оксид. Соответственно этим трём оксидам известны и три ряда соединений хрома.

Соединения хрома ( II). При растворении хрома в соляной кислоте получается раствор голубого цвета, содержащий хлорид хрома ( II) CrCl2 . Если к этому раствору прилить щелочи, то выпадает желтый осадок – гидроксид хрома ( II) Cr(OH)2 . Соединения хрома (II)неустойчивы и быстро окисляются кислородом воздуха в соединения хрома (III).

Соединения хрома ( III). Оксид хрома ( III) , Cr2 O3 представляет собой тугоплавкое вещество зелёного цвета, применя6емое под названием зелёного крона для приготовления клеевой и масляной красок. При сплавлении с силикатами оксид хрома (III) окрашивает их в зелёный цвет и поэтому служит для окраски стекла и фарфора. Cr2 O3 входит также в состав полирующих средств.

Гидроксид хрома ( III) Cr(OH)3 выпадает в виде синевато-серого осадка при действии щелочей на соли хрома (III):

Cr3+ +3OH- →Cr(OH)3 ↓

Подобно гидроксидам алюминия и цинка, он имеет амфотерный характер и растворяется в кислотах с образованием солей хрома (III), а в щелочах – изумрудно-зелёных растворов хримотов , например:

Cr(OH)3 + 3NaOH→Na3 [Cr(OH)6 ]

или

Cr(OH)3 +3OH- →[Cr(OH)6 ]3-

Хромиты, полученные сплавлением Cr2 O3 с оксидами других металлов и известные главным образом для двухвалентных металлов, имеют состав, отвечающий формуле М(CrO2 )2 , и представляют собой соли метахромистой кислоты HcrO2 . к ним относится и природный хромистый железняк Fe(CrO2 )2 .

Из солей хрома (III) самой распространённой является двойная соль хрома и калия – хромокалиевые квасцы KCr(SO4 )2 ∙12h3 O, образующие сине-фиолетовые кристаллы.

Соли хрома (III) во многом похожи на соли алюминия. В водных растворах они сильно гидролизованы и легко превращаются в основные соли. Со слабыми кислотами хром (III), подобно алюминию, солей не образует.

Соединения хрома ( VI). Важнейшими соединениями хрома (VI) являются триоксид хрома , или хромовый ангидрид , CrO3 и соли отвечающих ему кислот – хромовой h3 CrO4 и двухромовой h3 CrO7 . Обе кислоты существуют только в водном растворе и при попытках выделить их из раствора, распадаются на хромовый ангидрид и воду; но соли их достаточно стойки. Соли хромовой кислоты называются хроматами , а двухромовой – бихроматами или дихроматами .

Почти все хроматы имеют желтую окраску. Некоторые из них применяются в качестве красок. Например, нерастворимый в воде хромат свинца PbCrO4 , под названием желтый крон , служит для приготовления желтой масляной краски.

При подкислении раствора какого-нибудь хромата, например, хромата калия K2 CrO4 , чисто-желтая окраска раствора сменяется на оранжевую вследствие перехода ионов CrO2-4 в ионы Cr2 O2-7 . Из полученного раствора может быть выделена соль двухромовой кислоты – двухромат калия K2 Cr2 O7 – в виде оранжево-красных кристаллов. Реакция превращения хромата в дихромат выражается уравнением:

2CrO2-4 +2H+ ↔Cr2 O2-7 +h3 O

Реакция обратима. Это значит, что при растворении дихромата в воде всегда образуется некоторое, хотя и незначительное, количество ионов Н+ и CrO2-4 ; поэтому раствор дихромата имеет, кислую реакцию. Если к раствору дихромата прибавлять щелочь, то гидроксид-ионы будут связывать находящиеся в растворе ионы водорода, равновесие смещается влево и в результате дихромат превращается в хромат. Таким образом, в присутствии избытка гидроксид-ионов в растворе практически существуют только ионы CrO2-4 , т. е. хромат, а при избытке ионов водорода – ионы Cr2 O2-7 , т. е. дихромат.

Хроматы щелочных металлов получаются путём окисления соединения хрома (III) в присутствии щелочи. Так, при действии брома на раствор хромита калия образуется хромат калия по уравнению:

2K3 [Cr(OH)6 ]+3Br2 +4KOH→2K2 CrO4 +6KBr+8h3 O

О происходящем окислении можно судить по тому, что изумрудно-зелёная окраска раствора хромита переходит в ярко-желтую.

Хроматы могут быть получены также сплавлением Cr2 O3 со щелочью в присутствии какого-нибудь окислителя, например хлората калия:

Cr2 O3 +4KOH+KClO3 →2K2 CrO4 +KCl+2h3 O

Хроматы и дихроматы – сильные окислительные. Поэтому ими широко пользуются для окисления различных веществ. Окисление производится в кислом растворе и обычно сопровождается резким изменением окраски (дихроматы окрашены в оранжевый цвет, а соли хромата (III) – в зелёный или зеленовато-фиолетовый).

Мы видели, что в кислых и в щелочных растворах соединения хрома (III) и хрома (VI) существует в разных формах: в кислой среде в виде ионов Cr3+ или Cr2 O2-7 , а в щелочной – в виде ионов [Cr(OH)6 ]3- или CrO2-4 . Поэтому взаимопревращение соединений хрома (III) и хрома (VI) протекает по-разному в зависимости от реакции раствора. В кислой среде устанавливается равновесие

Cr2 O2-7 +14H+ +6eˉ↔2Cr3+ +7h3 O

а в щелочной

[Cr(OH)6 ]3- +2OH- ↔CrO2-4 +4h3 O+3eˉ

Однако и в кислой, и в щелочной среде окисления хрома (III)приводит к уменьшению pH раствора; обратный же процесс – восстановление хрома (VI) – сопровождается увеличением pH. Поэтому, в соответствии с принципом Ле Шарля, при повышении кислотной среды равновесие смещается в направлении восстановления хрома (VI), а при уменьшении кислотности – в направлении окисления хрома (III). Иначе говоря, окислительные свойства соединений хрома (VI) наиболее сильно выражены в кислой среде, а восстановительные свойства соединений хрома (III) – в щелочной. Именно поэтому, как указывалось выше, окисление хромитов в хроматы осуществляют в присутствии щелочи, а соединения хрома (VI) применяют в качестве окислителей в кислых растворах.

Приведём несколько примеров окислительно-восстановительных реакций, протекающих при участии дихроматов.

1. При пропускании сероводорода через подкисленный серной кислотой раствор дихромата оранжевая окраска раствора переходит в зелёную и одновременно жидкость становится мутной вследствие выделения серы:

K2 Cr2 O7 +3h3 S+4h3 SO4 →Cr2 (SO4 )3 +3S↓+K2 SO4 +7h3 O

2. При действии концентрированной соляной кислоты на дихромат калия выделяется хлор и получается зелёный раствор, содержащий хлорид хрома (III):

K2 Cr2 O7 +14HCl→2CrCl3 +3Cl2 ↑+2KCl+7h3 O

3. Если пропускать диоксид серы через концентрированный раствор дихромата калия, содержащий достаточное количество серной кислоты, то образуются эквимолекулярные количества сульфатов калия и хрома (III):

K2 Cr2 O7 +3SO2 +h3 SO4 →Cr2 (SO4 )3 +K2 SO4 +h3 O

При выпаривании раствора из него выделяются хромокалиевые квасцы KCr(SO4 )2 ∙12h3 O. Этой реакцией пользуются для получения хромокалиевых квасцов в промышленности.

Наиболее важными из дихроматов являются дихромат калия K2 Cr2 O7 и дихромат натрия Na2 Cr2 O7 ∙2h3 O, образующие оранжево-красные кристаллы. Обе соли, известные также под названием хромпиков , широко применяются в качестве окислителей при производстве многих органических соединений, в кожевенной промышленности при дублении кож, в спичечной и текстильной промышленности. Смесь концентрированной серной кислоты с водным раствором дихромата калия или натрия под названием «хромовой смеси» часто применяется для энергичного окисления и для очистки химической посуды.

Все соли хромовых кислот ядовиты.

Триоксид хрома , или хромовый ангидрид , CrO3 выпадает в виде тёмно-красных игольчатых кристаллов при действии концентрированной серной кислоты на насыщенный раствор дихромата калия или натрия:

K2 Cr2 O7 +h3 SO4 →2CrO3 ↓+K2 SO4 +h3 O

Хромовый ангидрид принадлежит к числу наиболее сильных окислителей. Например, этиловый спирт при соприкосновении с ним воспламеняется. Производя окисление, хромовый ангидрид превращается в оксид хрома (III) Cr2 O3 .

Хромовый ангидрид легко растворяется в воде с образованием хромовой и двухромовой кислот.

Кислород ( Oxygenium ). Кислород – самый распространенный элемент земной коры. В свободном состоянии 20,9% кислорода находится в атмосферном воздухе, что составляет приблизительно 1/5 по объему.

Кислород входит в состав почти всех окружающих нас веществ. Так, например, вода, песок, многие горные породы и минералы, составляющие земную кору, содержат кислород. Кислород является также важной частью многих органических соединений, например белков, жиров и углеводов, имеющих исключительно большое значение в жизни растений, животных и человека. Общее количество кислорода в земной коре близко к половине её массы (около 47%).

Природный кислород состоит из трёх стабильных изотопов: 16 О (99,76%), 17 О (0,04%) и 18 О (0,2%).

Получение и свойства кислорода. Кислород был впервые получен в чистом виде К. В. Шееле в 1772г., а затем в 1774г. Д. Пристли (Англия), который выделил го из оксида ртути (II). Однако Пристли не знал, что полученный им газ входит в состав воздуха. Только спустя несколько лет Лавуазье, подробно изучивший свойства этого газа, установил, что он является составной частью воздуха.

В промышленности кислород получают из воздуха, который представляет собой смесь различных газов; основные компоненты в нём – азот и кислород. Для получения кислорода воздух под давлением сжижают. Так как температура кипения жидкого азота (-196˚С) ниже температуры кипения жидкого кислорода (-183˚С), то азот испаряется, а жидкий кислород остаётся. Газообразный кислород хранят в стальных баллонах под давлением 15 МПа. Важнейшим лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества кислорода можно также получать взаимодействием раствора перманганата калия с подкисленным раствором пероксида водорода или термическим разложением некоторых кислородсодержащих веществ, перманганата калия:

2KMnO4 →K2 MnO4 +MnO2 +O2 ↑

Кислород – бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха: масса 1 кислорода при нормальных условиях равна 1,43г, а 1 л воздуха 1,293 г. Кислород растворяется в воде, хотя и в небольших количествах: 100объёмов воды при 0˚С растворяют 4,9, а при 20˚С – 3,1 объёма кислорода.

Кислород образует двухатомные молекулы, характеризующиеся высокой прочностью. При комнатной температуре его диссоциация на атомы ничтожна; лишь при 1500˚С она становится заметной.

Магнитные свойства кислорода указывают на наличие в молекуле О2 двух неспаренных электронов. Эти электроны размещаются на разрыхляющих молекулярных π -орбиталях. Парамагнитность кислорода проявляется, в частности, в том, что жидкий кислород притягивается магнитом.

Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия, как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например, оксид азота(II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением .

Горение в чистом кислороде происходит гораздо энергичнее, чем в воздухе. Хотя при этом выделяется такое же количество теплоты как и при горении в воздухе, но процесс протекает быстрее и выделяющаяся теплота не тратится на нагревание азота воздуха; поэтому температура горения в кислороде значительно выше, чем в воздухе.

Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов – дыхание. Важное значение имеет и другой процесс, в котором участвует кислород, - тление и гниение погибших животных и растений; при этом сложные органические вещества превращаются в более простые (в конечном результате в CO2 , воду и азот), а последние вновь вступают в общий круговорот веществ в природе.

Применение кислорода весьма многообразно. Его применяют для интенсификации химических процессов во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горелках. Кислород используют в медицине при затруднённом дыхании.

www.yurii.ru

Учебное пособие - Хром и кислород

Хром ( Chromium ). Хром содержится в земной коре в количестве 0,02%. В природе он встречается главным образом в виде хромистого железняка FeO∙Cr2 O3, богатые месторождения которого имеются в Казахстане и Урале.

При восстановления хромистого железняка углём появляется сплав хрома с железом–феррохром, который непосредственно используется в металлургической промышленности при производстве хромистых сталей. Для получения чистого хрома сначала получают оксид хрома (III), а затем восстанавливают его алюминотермическим способом.

Хром представляет собой твёрдый блестящий металл, плавящийся при 1890˚С; плотность его 7,19 г/см3. При комнатной температуре хром стоек к воде и к воздуху. Разбавленные серная и соляная кислоты растворяют хром с выделением водорода. В холодной концентрированной азотной кислоте хром нерастворим и после обработки ею становится пассивным.

Металлический хром используется для хромирования, а также в качестве одного из важнейших компонентов легированных сталей. Введение хрома в сталь повышает её устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Кроме того, хромистые стали, обладают повышенной твёрдостью. Хром входит в состав нержавеющих, кислотоупорных, жаропрочных сталей.

Хром образует три оксида: оксид хрома ( II), илизакись хрома, CrO, имеющий основной характер, оксид хрома ( III), или окись хрома, Cr2 O3, проявляющий амфотерные свойства, и окись хрома( VI), или хромовый ангидрид, CrO3 – кислотный оксид. Соответственно этим трём оксидам известны и три ряда соединений хрома.

Соединения хрома ( II). При растворении хрома в соляной кислоте получается раствор голубого цвета, содержащий хлорид хрома ( II) CrCl2. Если к этому раствору прилить щелочи, то выпадает желтый осадок – гидроксид хрома ( II) Cr(OH)2. Соединения хрома (II)неустойчивы и быстро окисляются кислородом воздуха в соединения хрома (III).

Соединения хрома ( III). Оксид хрома ( III), Cr2 O3 представляет собой тугоплавкое вещество зелёного цвета, применя6емое под названием зелёного крона для приготовления клеевой и масляной красок. При сплавлении с силикатами оксид хрома (III) окрашивает их в зелёный цвет и поэтому служит для окраски стекла и фарфора. Cr2 O3 входит также в состав полирующих средств.

Гидроксид хрома ( III) Cr(OH)3 выпадает в виде синевато-серого осадка при действии щелочей на соли хрома (III):

Cr3+ +3OH- →Cr(OH)3 ↓

Подобно гидроксидам алюминия и цинка, он имеет амфотерный характер и растворяется в кислотах с образованием солей хрома (III), а в щелочах – изумрудно-зелёных растворов хримотов, например:

Cr(OH)3 + 3NaOH→Na3 [Cr(OH)6 ]

или

Cr(OH)3 +3OH- →[Cr(OH)6 ]3-

Хромиты, полученные сплавлением Cr2 O3 с оксидами других металлов и известные главным образом для двухвалентных металлов, имеют состав, отвечающий формуле М(CrO2 )2, и представляют собой соли метахромистой кислоты HcrO2. к ним относится и природный хромистый железняк Fe(CrO2 )2 .

Из солей хрома (III) самой распространённой является двойная соль хрома и калия – хромокалиевые квасцы KCr(SO4 )2 ∙12h3 O, образующие сине-фиолетовые кристаллы.

Соли хрома (III) во многом похожи на соли алюминия. В водных растворах они сильно гидролизованы и легко превращаются в основные соли. Со слабыми кислотами хром (III), подобно алюминию, солей не образует.

Соединения хрома ( VI). Важнейшими соединениями хрома (VI) являются триоксид хрома, или хромовый ангидрид, CrO3 и соли отвечающих ему кислот – хромовой h3 CrO4 и двухромовой h3 CrO7. Обе кислоты существуют только в водном растворе и при попытках выделить их из раствора, распадаются на хромовый ангидрид и воду; но соли их достаточно стойки. Соли хромовой кислоты называются хроматами, а двухромовой – бихроматами или дихроматами .

Почти все хроматы имеют желтую окраску. Некоторые из них применяются в качестве красок. Например, нерастворимый в воде хромат свинца PbCrO4, под названием желтый крон, служит для приготовления желтой масляной краски.

При подкислении раствора какого-нибудь хромата, например, хромата калия K2 CrO4, чисто-желтая окраска раствора сменяется на оранжевую вследствие перехода ионов CrO2-4 в ионы Cr2 O2-7. Из полученного раствора может быть выделена соль двухромовой кислоты – двухромат калия K2 Cr2 O7 – в виде оранжево-красных кристаллов. Реакция превращения хромата в дихромат выражается уравнением:

2CrO2-4 +2H+ ↔Cr2 O2-7 +h3 O

Реакция обратима. Это значит, что при растворении дихромата в воде всегда образуется некоторое, хотя и незначительное, количество ионов Н+ и CrO2-4; поэтому раствор дихромата имеет, кислую реакцию. Если к раствору дихромата прибавлять щелочь, то гидроксид-ионы будут связывать находящиеся в растворе ионы водорода, равновесие смещается влево и в результате дихромат превращается в хромат. Таким образом, в присутствии избытка гидроксид-ионов в растворе практически существуют только ионы CrO2-4, т. е. хромат, а при избытке ионов водорода – ионы Cr2 O2-7, т. е. дихромат.

Хроматы щелочных металлов получаются путём окисления соединения хрома (III) в присутствии щелочи. Так, при действии брома на раствор хромита калия образуется хромат калия по уравнению:

2K3 [Cr(OH)6 ]+3Br2 +4KOH→2K2 CrO4 +6KBr+8h3 O

О происходящем окислении можно судить по тому, что изумрудно-зелёная окраска раствора хромита переходит в ярко-желтую.

Хроматы могут быть получены также сплавлением Cr2 O3 со щелочью в присутствии какого-нибудь окислителя, например хлората калия:

Cr2 O3 +4KOH+KClO3 →2K2 CrO4 +KCl+2h3 O

Хроматы и дихроматы – сильные окислительные. Поэтому ими широко пользуются для окисления различных веществ. Окисление производится в кислом растворе и обычно сопровождается резким изменением окраски (дихроматы окрашены в оранжевый цвет, а соли хромата (III) – в зелёный или зеленовато-фиолетовый).

Мы видели, что в кислых и в щелочных растворах соединения хрома (III) и хрома (VI) существует в разных формах: в кислой среде в виде ионов Cr3+ или Cr2 O2-7, а в щелочной – в виде ионов [Cr(OH)6 ]3- или CrO2-4. Поэтому взаимопревращение соединений хрома (III) и хрома (VI) протекает по-разному в зависимости от реакции раствора. В кислой среде устанавливается равновесие

Cr2 O2-7 +14H+ +6eˉ↔2Cr3+ +7h3 O

а в щелочной

[Cr(OH)6 ]3- +2OH- ↔CrO2-4 +4h3 O+3eˉ

Однако и в кислой, и в щелочной среде окисления хрома (III)приводит к уменьшению pH раствора; обратный же процесс – восстановление хрома (VI) – сопровождается увеличением pH. Поэтому, в соответствии с принципом Ле Шарля, при повышении кислотной среды равновесие смещается в направлении восстановления хрома (VI), а при уменьшении кислотности – в направлении окисления хрома (III). Иначе говоря, окислительные свойства соединений хрома (VI) наиболее сильно выражены в кислой среде, а восстановительные свойства соединений хрома (III) – в щелочной. Именно поэтому, как указывалось выше, окисление хромитов в хроматы осуществляют в присутствии щелочи, а соединения хрома (VI) применяют в качестве окислителей в кислых растворах.

Приведём несколько примеров окислительно-восстановительных реакций, протекающих при участии дихроматов.

1. При пропускании сероводорода через подкисленный серной кислотой раствор дихромата оранжевая окраска раствора переходит в зелёную и одновременно жидкость становится мутной вследствие выделения серы:

K2 Cr2 O7 +3h3 S+4h3 SO4 →Cr2 (SO4 )3 +3S↓+K2 SO4 +7h3 O

2. При действии концентрированной соляной кислоты на дихромат калия выделяется хлор и получается зелёный раствор, содержащий хлорид хрома (III):

K2 Cr2 O7 +14HCl→2CrCl3 +3Cl2 ↑+2KCl+7h3 O

3. Если пропускать диоксид серы через концентрированный раствор дихромата калия, содержащий достаточное количество серной кислоты, то образуются эквимолекулярные количества сульфатов калия и хрома (III):

K2 Cr2 O7 +3SO2 +h3 SO4 →Cr2 (SO4 )3 +K2 SO4 +h3 O

При выпаривании раствора из него выделяются хромокалиевые квасцы KCr(SO4 )2 ∙12h3 O. Этой реакцией пользуются для получения хромокалиевых квасцов в промышленности.

Наиболее важными из дихроматов являются дихромат калия K2 Cr2 O7 и дихромат натрия Na2 Cr2 O7 ∙2h3 O, образующие оранжево-красные кристаллы. Обе соли, известные также под названием хромпиков, широко применяются в качестве окислителей при производстве многих органических соединений, в кожевенной промышленности при дублении кож, в спичечной и текстильной промышленности. Смесь концентрированной серной кислоты с водным раствором дихромата калия или натрия под названием «хромовой смеси» часто применяется для энергичного окисления и для очистки химической посуды.

Все соли хромовых кислот ядовиты.

Триоксид хрома, или хромовый ангидрид, CrO3 выпадает в виде тёмно-красных игольчатых кристаллов при действии концентрированной серной кислоты на насыщенный раствор дихромата калия или натрия:

K2 Cr2 O7 +h3 SO4 →2CrO3 ↓+K2 SO4 +h3 O

Хромовый ангидрид принадлежит к числу наиболее сильных окислителей. Например, этиловый спирт при соприкосновении с ним воспламеняется. Производя окисление, хромовый ангидрид превращается в оксид хрома (III) Cr2 O3 .

Хромовый ангидрид легко растворяется в воде с образованием хромовой и двухромовой кислот.

Кислород ( Oxygenium ). Кислород – самый распространенный элемент земной коры. В свободном состоянии 20,9% кислорода находится в атмосферном воздухе, что составляет приблизительно 1/5 по объему.

Кислород входит в состав почти всех окружающих нас веществ. Так, например, вода, песок, многие горные породы и минералы, составляющие земную кору, содержат кислород. Кислород является также важной частью многих органических соединений, например белков, жиров и углеводов, имеющих исключительно большое значение в жизни растений, животных и человека. Общее количество кислорода в земной коре близко к половине её массы (около 47%).

Природный кислород состоит из трёх стабильных изотопов: 16 О (99,76%), 17 О (0,04%) и 18 О (0,2%).

Получение и свойства кислорода. Кислород был впервые получен в чистом виде К. В. Шееле в 1772г., а затем в 1774г. Д. Пристли (Англия), который выделил го из оксида ртути (II). Однако Пристли не знал, что полученный им газ входит в состав воздуха. Только спустя несколько лет Лавуазье, подробно изучивший свойства этого газа, установил, что он является составной частью воздуха.

В промышленности кислород получают из воздуха, который представляет собой смесь различных газов; основные компоненты в нём – азот и кислород. Для получения кислорода воздух под давлением сжижают. Так как температура кипения жидкого азота (-196˚С) ниже температуры кипения жидкого кислорода (-183˚С), то азот испаряется, а жидкий кислород остаётся. Газообразный кислород хранят в стальных баллонах под давлением 15 МПа. Важнейшим лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества кислорода можно также получать взаимодействием раствора перманганата калия с подкисленным раствором пероксида водорода или термическим разложением некоторых кислородсодержащих веществ, перманганата калия:

2KMnO4 →K2 MnO4 +MnO2 +O2 ↑

Кислород – бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха: масса 1 кислорода при нормальных условиях равна 1,43г, а 1 л воздуха 1,293 г. Кислород растворяется в воде, хотя и в небольших количествах: 100объёмов воды при 0˚С растворяют 4,9, а при 20˚С – 3,1 объёма кислорода.

Кислород образует двухатомные молекулы, характеризующиеся высокой прочностью. При комнатной температуре его диссоциация на атомы ничтожна; лишь при 1500˚С она становится заметной.

Магнитные свойства кислорода указывают на наличие в молекуле О2 двух неспаренных электронов. Эти электроны размещаются на разрыхляющих молекулярных π -орбиталях. Парамагнитность кислорода проявляется, в частности, в том, что жидкий кислород притягивается магнитом.

Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия, как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например, оксид азота(II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением .

Горение в чистом кислороде происходит гораздо энергичнее, чем в воздухе. Хотя при этом выделяется такое же количество теплоты как и при горении в воздухе, но процесс протекает быстрее и выделяющаяся теплота не тратится на нагревание азота воздуха; поэтому температура горения в кислороде значительно выше, чем в воздухе.

Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов – дыхание. Важное значение имеет и другой процесс, в котором участвует кислород, — тление и гниение погибших животных и растений; при этом сложные органические вещества превращаются в более простые (в конечном результате в CO2, воду и азот), а последние вновь вступают в общий круговорот веществ в природе.

Применение кислорода весьма многообразно. Его применяют для интенсификации химических процессов во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горелках. Кислород используют в медицине при затруднённом дыхании.

www.ronl.ru

Хром и кислород

Хром (Chromium). Хром содержится в земной коре в количестве 0,02%. В природе он встречается главным образом в виде хромистого железняка FeO∙Cr2O3, богатые месторождения которого имеются в Казахстане и Урале. При восстановления хромистого железняка углём появляется сплав хрома с железом–феррохром, который непосредственно используется в металлургической промышленности при производстве хромистых сталей. Для получения чистого хрома сначала получают оксид хрома (III), а затем восстанавливают его алюминотермическим способом. Хром представляет собой твёрдый блестящий металл, плавящийся при 1890˚С; плотность его 7,19 г/см3. При комнатной температуре хром стоек к воде и к воздуху. Разбавленные серная и соляная кислоты растворяют хром с выделением водорода. В холодной концентрированной азотной кислоте хром нерастворим и после обработки ею становится пассивным. Металлический хром используется для хромирования, а также в качестве одного из важнейших компонентов легированных сталей. Введение хрома в сталь повышает её устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Кроме того, хромистые стали, обладают повышенной твёрдостью. Хром входит в состав нержавеющих, кислотоупорных, жаропрочных сталей. Хром образует три оксида: оксид хрома (II), или закись хрома, CrO, имеющий основной характер, оксид хрома (III), или окись хрома, Cr2O3, проявляющий амфотерные свойства, и окись хрома(VI), или хромовый ангидрид, CrO3 – кислотный оксид. Соответственно этим трём оксидам известны и три ряда соединений хрома.Соединения хрома (II). При растворении хрома в соляной кислоте получается раствор голубого цвета, содержащий хлорид хрома (II) CrCl2. Если к этому раствору прилить щелочи, то выпадает желтый осадок – гидроксид хрома (II) Cr(OH)2. Соединения хрома (II)неустойчивы и быстро окисляются кислородом воздуха в соединения хрома (III).Соединения хрома (III). Оксид хрома (III), Cr2O3 представляет собой тугоплавкое вещество зелёного цвета, применя6емое под названием зелёного крона для приготовления клеевой и масляной красок. При сплавлении с силикатами оксид хрома (III) окрашивает их в зелёный цвет и поэтому служит для окраски стекла и фарфора. Cr2O3 входит также в состав полирующих средств.Гидроксид хрома (III) Cr(OH)3 выпадает в виде синевато-серого осадка  при действии щелочей на соли хрома (III): Cr3++3OH-→Cr(OH)3↓ Подобно гидроксидам алюминия и цинка, он имеет амфотерный характер и растворяется в кислотах с образованием солей хрома (III), а в щелочах – изумрудно-зелёных растворов хримотов, например: Cr(OH)3+ 3NaOH→Na3[Cr(OH)6] или Cr(OH)3+3OH-→[Cr(OH)6]3- Хромиты, полученные сплавлением Cr2O3 с оксидами других металлов и известные главным образом для двухвалентных металлов, имеют состав, отвечающий формуле М(CrO2)2, и представляют собой соли метахромистой кислоты HcrO2. к ним относится и природный хромистый железняк Fe(CrO2)2. Из солей хрома (III) самой распространённой является двойная соль хрома и калия – хромокалиевые квасцы KCr(SO4)2∙12h3O, образующие сине-фиолетовые кристаллы. Соли хрома (III) во многом похожи на соли алюминия. В водных растворах они сильно гидролизованы и легко превращаются в основные соли. Со слабыми кислотами хром (III), подобно алюминию, солей не образует.Соединения хрома (VI). Важнейшими соединениями хрома (VI) являются триоксид хрома, или хромовый ангидрид, CrO3 и соли отвечающих ему кислот – хромовой h3CrO4 и двухромовой h3CrO7. Обе кислоты существуют только в водном растворе и при попытках выделить их из раствора, распадаются на хромовый ангидрид и воду; но соли их достаточно стойки. Соли хромовой кислоты называются хроматами, а двухромовой – бихроматами или дихроматами. Почти все хроматы имеют желтую окраску. Некоторые из них применяются в качестве красок. Например, нерастворимый в воде хромат свинца PbCrO4, под названием желтый крон, служит для приготовления желтой масляной краски. При подкислении раствора какого-нибудь хромата, например, хромата калия K2CrO4, чисто-желтая окраска раствора сменяется на оранжевую вследствие перехода ионов CrO2-4 в ионы Cr2O2-7. Из полученного раствора может быть выделена соль двухромовой кислоты – двухромат калия K2Cr2O7 – в виде оранжево-красных кристаллов. Реакция превращения  хромата в дихромат выражается уравнением: 2CrO2-4+2H+↔Cr2O2-7+h3O Реакция обратима. Это значит, что при растворении дихромата в воде всегда образуется некоторое, хотя и незначительное, количество ионов Н+ и CrO2-4; поэтому раствор дихромата имеет, кислую реакцию. Если к раствору дихромата прибавлять щелочь, то гидроксид-ионы будут связывать находящиеся в растворе ионы водорода, равновесие смещается влево и в результате дихромат превращается в хромат. Таким образом, в присутствии избытка гидроксид-ионов в растворе практически существуют только ионы CrO2-4, т. е. хромат, а при избытке ионов водорода – ионы Cr2O2-7, т. е. дихромат. Хроматы щелочных металлов получаются путём окисления соединения хрома (III) в присутствии щелочи. Так, при действии брома на раствор хромита калия образуется хромат калия по уравнению: 2K3[Cr(OH)6]+3Br2+4KOH→2K2CrO4+6KBr+8h3O О происходящем окислении можно судить по тому, что изумрудно-зелёная окраска раствора хромита переходит в ярко-желтую. Хроматы могут быть получены также сплавлением Cr2O3 со щелочью в присутствии какого-нибудь окислителя, например хлората калия: Cr2O3+4KOH+KClO3→2K2CrO4+KCl+2h3O Хроматы и дихроматы – сильные окислительные. Поэтому ими широко пользуются для окисления различных веществ. Окисление производится в кислом растворе и обычно сопровождается резким изменением окраски (дихроматы окрашены в оранжевый цвет, а соли хромата (III) – в зелёный или зеленовато-фиолетовый). Мы видели, что  в кислых  и  в   щелочных   растворах  соединения  хрома (III) и   хрома (VI) существует в разных формах: в кислой среде в виде ионов Cr3+ или Cr2O2-7, а в щелочной – в виде ионов [Cr(OH)6]3- или CrO2-4. Поэтому взаимопревращение соединений хрома (III) и хрома (VI) протекает по-разному в зависимости от реакции раствора. В кислой среде устанавливается равновесие Cr2O2-7+14H++6eˉ↔2Cr3++7h3O а в щелочной [Cr(OH)6]3-+2OH-↔CrO2-4+4h3O+3eˉ Однако и в кислой, и в щелочной среде окисления хрома (III)приводит к уменьшению pH раствора; обратный же процесс – восстановление хрома (VI) – сопровождается увеличением pH. Поэтому, в соответствии с принципом Ле Шарля, при повышении кислотной среды равновесие смещается  в направлении восстановления  хрома (VI), а при уменьшении кислотности – в направлении окисления хрома (III). Иначе говоря, окислительные свойства соединений хрома (VI) наиболее сильно выражены в кислой среде, а восстановительные свойства соединений  хрома (III) – в щелочной. Именно поэтому, как указывалось выше, окисление хромитов в хроматы осуществляют в присутствии щелочи, а соединения хрома (VI) применяют в качестве окислителей в кислых растворах. Приведём несколько примеров окислительно-восстановительных реакций, протекающих при участии дихроматов. 1.      При пропускании сероводорода через подкисленный серной кислотой раствор дихромата оранжевая окраска раствора переходит в зелёную и одновременно жидкость становится мутной вследствие выделения серы: K2Cr2O7+3h3S+4h3SO4→Cr2(SO4)3+3S↓+K2SO4+7h3O 2.      При действии концентрированной соляной кислоты на дихромат калия выделяется  хлор   и   получается  зелёный  раствор, содержащий хлорид хрома (III): K2Cr2O7+14HCl→2CrCl3+3Cl2↑+2KCl+7h3O 3.      Если пропускать диоксид серы через концентрированный раствор дихромата калия, содержащий достаточное количество серной кислоты, то образуются эквимолекулярные количества сульфатов калия и хрома (III): K2Cr2O7+3SO2+h3SO4→Cr2(SO4)3+K2SO4+h3O При выпаривании раствора из него выделяются хромокалиевые квасцы KCr(SO4)2∙12h3O. Этой реакцией пользуются для получения хромокалиевых квасцов в промышленности. Наиболее важными из дихроматов являются дихромат калия K2Cr2O7 и дихромат натрия Na2Cr2O7∙2h3O, образующие оранжево-красные кристаллы. Обе соли, известные также под названием хромпиков, широко применяются в качестве окислителей при производстве многих органических соединений, в кожевенной промышленности при дублении кож, в спичечной и текстильной промышленности. Смесь концентрированной серной кислоты с водным раствором  дихромата калия или натрия под названием «хромовой смеси» часто применяется для энергичного окисления и для очистки химической посуды.Все соли хромовых кислот ядовиты. Триоксид хрома, или хромовый ангидрид, CrO3 выпадает в виде тёмно-красных игольчатых кристаллов при действии концентрированной серной кислоты на насыщенный раствор дихромата калия или натрия: K2Cr2O7+h3SO4→2CrO3↓+K2SO4+h3O Хромовый ангидрид принадлежит к числу наиболее сильных окислителей. Например, этиловый спирт при соприкосновении с ним воспламеняется. Производя окисление, хромовый ангидрид превращается в оксид хрома (III) Cr2O3. Хромовый ангидрид легко растворяется в воде с образованием хромовой и двухромовой кислот.Кислород (Oxygenium). Кислород – самый распространенный элемент земной коры. В свободном состоянии 20,9% кислорода находится в атмосферном воздухе, что составляет приблизительно 1/5 по объему. Кислород входит в состав почти всех окружающих нас веществ. Так, например, вода, песок, многие горные породы и минералы, составляющие земную кору, содержат кислород. Кислород является также важной частью многих органических соединений, например белков, жиров и углеводов, имеющих исключительно большое значение в жизни растений, животных и человека. Общее количество кислорода в земной коре близко к половине её массы (около 47%). Природный   кислород   состоит   из   трёх   стабильных  изотопов:  16О  (99,76%),  17О (0,04%) и 18О (0,2%).Получение  и свойства кислорода. Кислород был впервые получен в чистом виде К. В. Шееле в 1772г., а затем в 1774г. Д. Пристли (Англия), который выделил го из оксида ртути (II). Однако Пристли не знал, что полученный им газ входит в состав воздуха. Только спустя несколько лет Лавуазье, подробно изучивший свойства этого газа, установил, что он является составной частью воздуха. В промышленности кислород получают из воздуха, который представляет собой смесь различных газов; основные компоненты в нём – азот и кислород. Для получения кислорода воздух под давлением сжижают. Так как температура кипения  жидкого  азота (-196˚С) ниже температуры кипения жидкого кислорода (-183˚С), то азот испаряется, а жидкий кислород остаётся. Газообразный кислород хранят в стальных баллонах под давлением 15 МПа. Важнейшим лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества кислорода можно также получать взаимодействием раствора перманганата калия  с подкисленным раствором пероксида водорода или термическим разложением некоторых кислородсодержащих веществ, перманганата калия: 2KMnO4→K2MnO4+MnO2+O2↑ Кислород – бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха: масса 1 кислорода при нормальных условиях равна 1,43г, а 1 л воздуха 1,293 г. Кислород растворяется в воде, хотя и в небольших количествах: 100объёмов воды при 0˚С растворяют 4,9, а при 20˚С – 3,1 объёма кислорода. Кислород образует двухатомные молекулы, характеризующиеся высокой прочностью. При комнатной температуре его диссоциация на атомы ничтожна; лишь при 1500˚С она становится заметной. Магнитные свойства кислорода указывают на наличие в молекуле О2 двух неспаренных электронов. Эти электроны размещаются на разрыхляющих молекулярных π-орбиталях. Парамагнитность кислорода проявляется, в частности, в том, что жидкий кислород притягивается магнитом. Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия, как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например, оксид азота(II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением. Горение в чистом кислороде происходит гораздо энергичнее, чем в воздухе. Хотя при этом выделяется такое же  количество теплоты как и при горении в воздухе, но процесс протекает быстрее и выделяющаяся теплота  не тратится на нагревание азота воздуха; поэтому температура горения в кислороде значительно выше, чем в воздухе. Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов – дыхание. Важное значение имеет и другой процесс, в котором участвует кислород, - тление и гниение погибших животных и растений; при этом сложные органические вещества превращаются в более  простые (в конечном результате в CO2, воду и азот), а последние вновь вступают в общий круговорот веществ в природе.Применение кислорода весьма многообразно. Его применяют для интенсификации химических процессов во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горелках. Кислород используют в медицине при затруднённом дыхании.

baza-referat.ru

Реферат - Хром и кислород

Хром ( Chromium ). Хром содержится в земной коре в количестве 0,02%. В природе он встречается главным образом в виде хромистого железняка FeO∙Cr2 O3, богатые месторождения которого имеются в Казахстане и Урале.

При восстановления хромистого железняка углём появляется сплав хрома с железом–феррохром, который непосредственно используется в металлургической промышленности при производстве хромистых сталей. Для получения чистого хрома сначала получают оксид хрома (III), а затем восстанавливают его алюминотермическим способом.

Хром представляет собой твёрдый блестящий металл, плавящийся при 1890˚С; плотность его 7,19 г/см3. При комнатной температуре хром стоек к воде и к воздуху. Разбавленные серная и соляная кислоты растворяют хром с выделением водорода. В холодной концентрированной азотной кислоте хром нерастворим и после обработки ею становится пассивным.

Металлический хром используется для хромирования, а также в качестве одного из важнейших компонентов легированных сталей. Введение хрома в сталь повышает её устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Кроме того, хромистые стали, обладают повышенной твёрдостью. Хром входит в состав нержавеющих, кислотоупорных, жаропрочных сталей.

Хром образует три оксида: оксид хрома ( II), илизакись хрома, CrO, имеющий основной характер, оксид хрома ( III), или окись хрома, Cr2 O3, проявляющий амфотерные свойства, и окись хрома( VI), или хромовый ангидрид, CrO3 – кислотный оксид. Соответственно этим трём оксидам известны и три ряда соединений хрома.

Соединения хрома ( II). При растворении хрома в соляной кислоте получается раствор голубого цвета, содержащий хлорид хрома ( II) CrCl2. Если к этому раствору прилить щелочи, то выпадает желтый осадок – гидроксид хрома ( II) Cr(OH)2. Соединения хрома (II)неустойчивы и быстро окисляются кислородом воздуха в соединения хрома (III).

Соединения хрома ( III). Оксид хрома ( III), Cr2 O3 представляет собой тугоплавкое вещество зелёного цвета, применя6емое под названием зелёного крона для приготовления клеевой и масляной красок. При сплавлении с силикатами оксид хрома (III) окрашивает их в зелёный цвет и поэтому служит для окраски стекла и фарфора. Cr2 O3 входит также в состав полирующих средств.

Гидроксид хрома ( III) Cr(OH)3 выпадает в виде синевато-серого осадка при действии щелочей на соли хрома (III):

Cr3+ +3OH- →Cr(OH)3 ↓

Подобно гидроксидам алюминия и цинка, он имеет амфотерный характер и растворяется в кислотах с образованием солей хрома (III), а в щелочах – изумрудно-зелёных растворов хримотов, например:

Cr(OH)3 + 3NaOH→Na3 [Cr(OH)6 ]

или

Cr(OH)3 +3OH- →[Cr(OH)6 ]3-

Хромиты, полученные сплавлением Cr2 O3 с оксидами других металлов и известные главным образом для двухвалентных металлов, имеют состав, отвечающий формуле М(CrO2 )2, и представляют собой соли метахромистой кислоты HcrO2. к ним относится и природный хромистый железняк Fe(CrO2 )2 .

Из солей хрома (III) самой распространённой является двойная соль хрома и калия – хромокалиевые квасцы KCr(SO4 )2 ∙12h3 O, образующие сине-фиолетовые кристаллы.

Соли хрома (III) во многом похожи на соли алюминия. В водных растворах они сильно гидролизованы и легко превращаются в основные соли. Со слабыми кислотами хром (III), подобно алюминию, солей не образует.

Соединения хрома ( VI). Важнейшими соединениями хрома (VI) являются триоксид хрома, или хромовый ангидрид, CrO3 и соли отвечающих ему кислот – хромовой h3 CrO4 и двухромовой h3 CrO7. Обе кислоты существуют только в водном растворе и при попытках выделить их из раствора, распадаются на хромовый ангидрид и воду; но соли их достаточно стойки. Соли хромовой кислоты называются хроматами, а двухромовой – бихроматами или дихроматами .

Почти все хроматы имеют желтую окраску. Некоторые из них применяются в качестве красок. Например, нерастворимый в воде хромат свинца PbCrO4, под названием желтый крон, служит для приготовления желтой масляной краски.

При подкислении раствора какого-нибудь хромата, например, хромата калия K2 CrO4, чисто-желтая окраска раствора сменяется на оранжевую вследствие перехода ионов CrO2-4 в ионы Cr2 O2-7. Из полученного раствора может быть выделена соль двухромовой кислоты – двухромат калия K2 Cr2 O7 – в виде оранжево-красных кристаллов. Реакция превращения хромата в дихромат выражается уравнением:

2CrO2-4 +2H+ ↔Cr2 O2-7 +h3 O

Реакция обратима. Это значит, что при растворении дихромата в воде всегда образуется некоторое, хотя и незначительное, количество ионов Н+ и CrO2-4; поэтому раствор дихромата имеет, кислую реакцию. Если к раствору дихромата прибавлять щелочь, то гидроксид-ионы будут связывать находящиеся в растворе ионы водорода, равновесие смещается влево и в результате дихромат превращается в хромат. Таким образом, в присутствии избытка гидроксид-ионов в растворе практически существуют только ионы CrO2-4, т. е. хромат, а при избытке ионов водорода – ионы Cr2 O2-7, т. е. дихромат.

Хроматы щелочных металлов получаются путём окисления соединения хрома (III) в присутствии щелочи. Так, при действии брома на раствор хромита калия образуется хромат калия по уравнению:

2K3 [Cr(OH)6 ]+3Br2 +4KOH→2K2 CrO4 +6KBr+8h3 O

О происходящем окислении можно судить по тому, что изумрудно-зелёная окраска раствора хромита переходит в ярко-желтую.

Хроматы могут быть получены также сплавлением Cr2 O3 со щелочью в присутствии какого-нибудь окислителя, например хлората калия:

Cr2 O3 +4KOH+KClO3 →2K2 CrO4 +KCl+2h3 O

Хроматы и дихроматы – сильные окислительные. Поэтому ими широко пользуются для окисления различных веществ. Окисление производится в кислом растворе и обычно сопровождается резким изменением окраски (дихроматы окрашены в оранжевый цвет, а соли хромата (III) – в зелёный или зеленовато-фиолетовый).

Мы видели, что в кислых и в щелочных растворах соединения хрома (III) и хрома (VI) существует в разных формах: в кислой среде в виде ионов Cr3+ или Cr2 O2-7, а в щелочной – в виде ионов [Cr(OH)6 ]3- или CrO2-4. Поэтому взаимопревращение соединений хрома (III) и хрома (VI) протекает по-разному в зависимости от реакции раствора. В кислой среде устанавливается равновесие

Cr2 O2-7 +14H+ +6eˉ↔2Cr3+ +7h3 O

а в щелочной

[Cr(OH)6 ]3- +2OH- ↔CrO2-4 +4h3 O+3eˉ

Однако и в кислой, и в щелочной среде окисления хрома (III)приводит к уменьшению pH раствора; обратный же процесс – восстановление хрома (VI) – сопровождается увеличением pH. Поэтому, в соответствии с принципом Ле Шарля, при повышении кислотной среды равновесие смещается в направлении восстановления хрома (VI), а при уменьшении кислотности – в направлении окисления хрома (III). Иначе говоря, окислительные свойства соединений хрома (VI) наиболее сильно выражены в кислой среде, а восстановительные свойства соединений хрома (III) – в щелочной. Именно поэтому, как указывалось выше, окисление хромитов в хроматы осуществляют в присутствии щелочи, а соединения хрома (VI) применяют в качестве окислителей в кислых растворах.

Приведём несколько примеров окислительно-восстановительных реакций, протекающих при участии дихроматов.

1. При пропускании сероводорода через подкисленный серной кислотой раствор дихромата оранжевая окраска раствора переходит в зелёную и одновременно жидкость становится мутной вследствие выделения серы:

K2 Cr2 O7 +3h3 S+4h3 SO4 →Cr2 (SO4 )3 +3S↓+K2 SO4 +7h3 O

2. При действии концентрированной соляной кислоты на дихромат калия выделяется хлор и получается зелёный раствор, содержащий хлорид хрома (III):

K2 Cr2 O7 +14HCl→2CrCl3 +3Cl2 ↑+2KCl+7h3 O

3. Если пропускать диоксид серы через концентрированный раствор дихромата калия, содержащий достаточное количество серной кислоты, то образуются эквимолекулярные количества сульфатов калия и хрома (III):

K2 Cr2 O7 +3SO2 +h3 SO4 →Cr2 (SO4 )3 +K2 SO4 +h3 O

При выпаривании раствора из него выделяются хромокалиевые квасцы KCr(SO4 )2 ∙12h3 O. Этой реакцией пользуются для получения хромокалиевых квасцов в промышленности.

Наиболее важными из дихроматов являются дихромат калия K2 Cr2 O7 и дихромат натрия Na2 Cr2 O7 ∙2h3 O, образующие оранжево-красные кристаллы. Обе соли, известные также под названием хромпиков, широко применяются в качестве окислителей при производстве многих органических соединений, в кожевенной промышленности при дублении кож, в спичечной и текстильной промышленности. Смесь концентрированной серной кислоты с водным раствором дихромата калия или натрия под названием «хромовой смеси» часто применяется для энергичного окисления и для очистки химической посуды.

Все соли хромовых кислот ядовиты.

Триоксид хрома, или хромовый ангидрид, CrO3 выпадает в виде тёмно-красных игольчатых кристаллов при действии концентрированной серной кислоты на насыщенный раствор дихромата калия или натрия:

K2 Cr2 O7 +h3 SO4 →2CrO3 ↓+K2 SO4 +h3 O

Хромовый ангидрид принадлежит к числу наиболее сильных окислителей. Например, этиловый спирт при соприкосновении с ним воспламеняется. Производя окисление, хромовый ангидрид превращается в оксид хрома (III) Cr2 O3 .

Хромовый ангидрид легко растворяется в воде с образованием хромовой и двухромовой кислот.

Кислород ( Oxygenium ). Кислород – самый распространенный элемент земной коры. В свободном состоянии 20,9% кислорода находится в атмосферном воздухе, что составляет приблизительно 1/5 по объему.

Кислород входит в состав почти всех окружающих нас веществ. Так, например, вода, песок, многие горные породы и минералы, составляющие земную кору, содержат кислород. Кислород является также важной частью многих органических соединений, например белков, жиров и углеводов, имеющих исключительно большое значение в жизни растений, животных и человека. Общее количество кислорода в земной коре близко к половине её массы (около 47%).

Природный кислород состоит из трёх стабильных изотопов: 16 О (99,76%), 17 О (0,04%) и 18 О (0,2%).

Получение и свойства кислорода. Кислород был впервые получен в чистом виде К. В. Шееле в 1772г., а затем в 1774г. Д. Пристли (Англия), который выделил го из оксида ртути (II). Однако Пристли не знал, что полученный им газ входит в состав воздуха. Только спустя несколько лет Лавуазье, подробно изучивший свойства этого газа, установил, что он является составной частью воздуха.

В промышленности кислород получают из воздуха, который представляет собой смесь различных газов; основные компоненты в нём – азот и кислород. Для получения кислорода воздух под давлением сжижают. Так как температура кипения жидкого азота (-196˚С) ниже температуры кипения жидкого кислорода (-183˚С), то азот испаряется, а жидкий кислород остаётся. Газообразный кислород хранят в стальных баллонах под давлением 15 МПа. Важнейшим лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества кислорода можно также получать взаимодействием раствора перманганата калия с подкисленным раствором пероксида водорода или термическим разложением некоторых кислородсодержащих веществ, перманганата калия:

2KMnO4 →K2 MnO4 +MnO2 +O2 ↑

Кислород – бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха: масса 1 кислорода при нормальных условиях равна 1,43г, а 1 л воздуха 1,293 г. Кислород растворяется в воде, хотя и в небольших количествах: 100объёмов воды при 0˚С растворяют 4,9, а при 20˚С – 3,1 объёма кислорода.

Кислород образует двухатомные молекулы, характеризующиеся высокой прочностью. При комнатной температуре его диссоциация на атомы ничтожна; лишь при 1500˚С она становится заметной.

Магнитные свойства кислорода указывают на наличие в молекуле О2 двух неспаренных электронов. Эти электроны размещаются на разрыхляющих молекулярных π -орбиталях. Парамагнитность кислорода проявляется, в частности, в том, что жидкий кислород притягивается магнитом.

Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия, как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например, оксид азота(II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением .

Горение в чистом кислороде происходит гораздо энергичнее, чем в воздухе. Хотя при этом выделяется такое же количество теплоты как и при горении в воздухе, но процесс протекает быстрее и выделяющаяся теплота не тратится на нагревание азота воздуха; поэтому температура горения в кислороде значительно выше, чем в воздухе.

Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов – дыхание. Важное значение имеет и другой процесс, в котором участвует кислород, — тление и гниение погибших животных и растений; при этом сложные органические вещества превращаются в более простые (в конечном результате в CO2, воду и азот), а последние вновь вступают в общий круговорот веществ в природе.

Применение кислорода весьма многообразно. Его применяют для интенсификации химических процессов во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горелках. Кислород используют в медицине при затруднённом дыхании.

www.ronl.ru

Хром определение кислорода - Справочник химика 21

    Определение газов. Определение водорода, кислорода и азота в металлическом хроме проводят методами вакуум-плавления [848, 858], изотопного разбавления [322], спектрального [11, 406, 474] и активационного анализа [596, 698, 1005]. Описаны [461] различные методы определения газов в хроме. Методы опре-. деления азота в хроме детально описаны в [84]. Метод вакуум-плавления определения кислорода и азота основан на плавлении образца в графитовом тигле при высоком вакууме выделяющиеся газы собирают и анализируют. Для анализа наиболее целесообразно использовать методы газовой хроматографии [284, 858] они позволяют достигать высокой чувствительности даже при анализе проб газов малого объема. [c.180]     Как показывает опыт, вакуумный метод применим для анализа титана и его сплавов, содержащих до 12% олова, 5% алюминия и 15% молибдена. С простыми усовершенствованиями метод можно применить для определения кислорода и водорода в сплавах, содержащих марганец большие количества алюминия, хром, медь и ванадий. [c.77]

    Фотометрические методы, основанные на реакциях окисления-восстановления, сравнительно мало применяются в фотометрическом анализе. Чаще всего реакции окисления — восстановления попользуются для определения марганца, хрома, мышьяка, кислорода, -галогенов, никеля и некоторых других компонентов. [c.370]

    Водород и кислород в хроме можно определять по методикам, используемым для анализа стали (см. выш е), с помощью защитной камеры [9, 250] или без камеры [297, 346, 347], В первом случае при определении кислорода ширину щели спектрографа ИСП-51 уменьшают до 0,015 мм, емкость в генераторе низковольтных импульсов — до 760 мкф (для регистрации каждой спектрограммы производится 20 импульсов без предварительного обжига). Давление гелия в камере 700 мм рт. ст. [c.158]

    Фогельсон Е. И. и Михайлова Е. Г. Применение раствора хлористого хрома для определения кислорода в газах. Зав. лаб., [c.230]

    Определение с помощью соли хрома (П). Кислород восстанавливают добавлением избыточного количества соли хрома (И), а затем определяют этот избыток титрованием иодатом. [c.821]

    Этот метод был применен для определения кислорода в меди, боре, таллии, кремнии, германии, титане, мышьяке, сурьме, селене, теллуре, уране, иоде, висмуте, ванадии, хроме, ниобии, тантале, вольфраме и свинце. [c.823]

    Кислородные соединения хрома. С кислородом хром образует три окисла закись хрома СгО, окись СггОз и хромовый ангидрид СгОз. На этих соединениях легко проследить определенную закономерность низшие окислы многовалентных металлов обладают основными свойствами — с кислотами они образуют типичные соли, высшие же окислы проявляют при взаимодействии с водой или щелочами кислотные свойств а. [c.365]

    Определение газов в молибдене и вольфраме не встречает затруднений, и разработанные методы позволяют надежно определять содержание водорода, кислорода и азота в этих металлах. При определении же газов в хроме не удается достичь полного извлечения кислорода. Результаты определения кислорода в хроме, полученные методом вакуум-плавления, несколько пиже результатов, полученных химическим методом. Для определения кислорода в хроме применяется также бром-углеродный метод [17]. Полное восстановление окиси происходит при 925° в течение 2 час. При этом порошкообразный образец должен быть хорошо перемешан с графитом. Определение кислорода в хроме методом изотопного разбавления [32] проводится при следующих условиях. Образцы хрома, смешанные со стандартным сплавом, нагреваются до 1450+50° в [c.87]

    В своих исследованиях мы наблюдали, что в хорошо раскисленных сталях метод вакуум-плавления обычно дает по кислороду результаты, близкие к полученным при анализе шлаковых включений. Однако в ряде случаев, по-видимому, когда кислород находится в стали в форме твердого раствора или в виде свободных окислов железа и марганца, не связанных, например, в силикаты, содержание кислорода, определенное анализом шлаковых включений, оказывается меньше, чем найденное по методу вакуум-плавления. Это может быть объяснено растворением закиси железа и закиси марганца реактивом при электрохимической обработке образца. В нашей практике был, например, такой случай. В сварном шве, содержащем 16% хрома, 13% никеля, 2% молибдена, 0,1% углерода и 1,5% марганца но подсчету количества шлаковых включений оказалось всего 0,0045% кислорода, из которого 0,0013% было связано с кремнием, 0,0001% с железом и 0,0031 % с алюминием. Однако механические свойства шва оказались очень невысокими, и было решено определить в нем содержание газов методом вакуум-плавления. Определение кислорода этим путем показало, что его содержится в металле шва 0,0510%, т. е. в 10 раз- [c.170]

    К хорошим поглотителям кислорода относится также раствор хлористого хрома. Этот поглотитель может применяться для определения кислорода в газе в присутствии сероводорода и двуокиси углерода. Однако в литературе имеется указание [26], что он легко выделяет водород, вследствие чего этот реактив не может считаться удовлетворительным для анализа газов. [c.125]

    Для определения кислорода используются, помимо поглощения в пипетке с пирогаллолом или хлористым хромом, различные методы — магнитный, термохимический, полярографический и др. [c.48]

    Для определения кислорода при высоких концентрациях, например при анализе чистого кислорода, применяют медноаммиачный раствор или раствор хлорида хрома. [c.101]

    Растворение металлов в броме. Имеется несколько сообщений об использовании брома для растворения металлов при высокой температуре, например, при определении кислорода в титане, цирконии и хроме [5.1827]. Графитовый порошок смешивают с образцом для перевода кислорода в монооксид углерода. Следовые количества бора в кремнии высокой чистоты определяют, проводя реакцию с парообразным бромом в закрытой системе с циркуляцией потока газа [5.1828]. Для быстрого растворения металлов и сплавов, а также других материалов, например кар- [c.262]

    ДЯ°=—268,5. Непосредственное определение теплоты реакции хрома с кислородом в калориметре [9] привело к значению ДЯ°==—272,70. Мы принимаем последнее значение, как основанное на принципиально более точном методе. [c.6]

    Порошки нержавеющих сталей широко применяются в металлургической промышленности и в ряде специальных производств. Основой контроля качества этих порошков является определение в них общего кислорода. Наибольшие трудности при определении кислорода, как известно, возникают из-за содержания в порошках окиси хрома. Многие методы определения кислорода непригодны из-за плохой растворимости окислов хрома и их трудной восстанавливаемости. Методы, пригодные для проведения анализа, например метод хлорирования, как правило, весьма трудоемки. [c.37]

    Наибольшие трудности возникают при определении кислорода в порошках, содержащих окислы хрома. Водородный метод определения кислорода неприменим в данном случае, так как окислы хрома в условиях проведения анализа восстанавливаются лишь частично. [c.55]

    Волюметрическое определение кислорода основано на поглощении его щелочным раствором пирогаллола, щелочным раствором гидросульфита натрия или раствором хлорида хрома (И). [c.766]

    В свое время было предложено определять долю поверхности, занимаемой окисью хрома в алюмохромовых катализаторах, по количеству избыточного кислорода , определяемому иодометрически [6]. Этот же подход рекомендован в работе [9] для определения поверхности окиси хрома в алюмохромовых катализаторах. Однако величины удельной поверхности окиси хрома, определенные по этой методике, являются только приближенными, так как дают отклонение до 30% от величины поверхности окиси хрома, найденной по низкотемпературной адсорбции О2 или СО [10]. Из экспериментальных данных [И] следует, что,действительно, наблюдается симбатность изменения величины поверхности окиси хрома, нанесенной, правда, на алюмосиликат, и изменения величины средней степени окисления хрома как для ряда образцов с разным содержанием хрома, так и для одного образца при различных условиях его окисления. Из сказанного следует, что по содержанию Сг " в образцах нельзя точно [c.133]

    В отличие от железа и никеля, хром, судя по имеющимся данным, не подвергается питтинговой коррозии в водных растворах даже при больших концентрациях активирующих анионов. Учитывая большое сродство хрома к кислороду, обусловливающего высокую стабильность пассивного состояния этого металла, неоднократно высказывалось предположение о том [ 130,135,136], что критические потенциалы питтингоофазования для хрома в растворах галогенидов лежат положительнее потеншшла пере пассивации этого металла, что исключает возможность их определения обычными электрохимическими методами, [c.31]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]

    Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]

    Мы не можем касаться здесь аналитической техники определения кислорода. Из реагентов, применяемых для этих целей, можно назвать белый фосфор, органические поглотители кислорода (такие, как пирогаллол или лейкосоединения красителей), медь, гипосульфит натрия и хлористый хром. Для растворов самым распространенным является, повидимому, метод Винклера в нем кислород используется для освобождения эквивалентного количества хлора (через промежуточную систему двухлористый марганец — треххлористый марганец), который легко может быть определен путем титрования иодистым калием и тиосульфатом. Если для определения кислорода применяются пирогаллол или лейкосоединения красителей (белое индиго, лейкометиленовый синий), процесс освобождения кислорода может быть прослежен колориметрически или спектрофотометрически. Подобная же методика применима при превращении гемоглобина в оксигемоглобин такой метод определения кислорода был впервые введен при исследовании фотосинтеза Хоппе-Зейлером [5] и позже использован Хиллом [64, 74]. Для тех же целей Остергаут [23, 24] предложил использовать кровь краба, содержащую гемоцианин и синеющую в присутствии кислорода. [c.254]

    Представляет интерес метод вакуумной экстракции для определения кислорода в ниобии [27], основанный на результатах исследований, утверждающих, что кислород можно экстрагировать из ниобия при нагревании до 2000° в вакууме 10торр. Водородный метод применяется для определения кислорода в висмуте [28] и сурьме [29]. Образцы висмута весом 1—10 г в зависимости от содержания кислорода в металле нагреваются при 850—900° в течение 30 мин. Примесь углерода приводит к завышенному содержанию кислорода. Восстановление окислов сурьмы водородом происходит в токе сухого водорода при 700°. Полное время восстановления равно около 4,5 час. Метод вакуум-плавления с железной ванной применяется для определения газов в хроме [30], молибдене, вольфраме [26] из элементов седьмой группы в марганце [1] в элементах восьмой группы в кобальте, никеле [31]. Газы в железе и платине также определяются методом вакуум-плавления. Из рассмотрения свойств других платиновых металлов можно ожидать, что методом вакуум-плавления могут определяться газы в родии и палладии. [c.87]

    Было найдено, что при 400—900° количественно реагируют с однохпористой серой окислы меди, железа, алюминия, магния, сернокислый барий [6], окислы циркония, бора [7], циркония, хрома и титана Выполнялись определения кислорода в сплавах никеля с вольфрамом и молибденом, в стали и металлических хроме и алюминии при содержании кислорода [c.155]

    При изучении водородного метода определения кислорода в стали [4—6] обращает на себя внимание поведение азота в среде водорода при нагреве. Последнему вопросу было посвящено исследование Фукке иМорле [3]. Они наблюдали поведение нитридов железа, алюминия, марганца, хрома, титана. [c.205]

    Таким образом, применяя 68 %-ную и 84%-ную Н2504, а также бромную воду (или 95 %-ную НдЗО ) с добавкой сульфата серебра, можно провести три определения, характеризующие содержание непредельных углеводородов. Подобные определения можно проводить на приборе для общего анализа, выделив для сернокислотных растворов дополнительные пинетки, или же для такого анализа должен быть сделан отдельный прибор, состоящий из бюретки и пяти пинеток [30]. Одну из пипеток заио-иняют раствором КОН для удаления и определения СОа, вторая пипетка с 68 %-ным раствором Н служит для иоглощения изобутилена, третья с 84%-НОЙ НзЗО для поглощения к-бутиленов и пропилена. В четвертой пипетке, содернбромную воду, поглощается этилен. В последней, пятой пипетке содержится раствор пирогаллола или хлористого хрома для определения кислорода. Эта пятая пипетка не является необходимой для определения непредельных углеводородов, но наличие ее в приборе желательно главным образом для установления примеси воздуха в газе. [c.71]

    Н2, СО, Не, Аг с некоторой примесью метана. Затем несколько раз разогревают и охлаждают баллончик, как это упомянуто выше, чтобы при вскипании конденсата выделились растворенные в нем газы N3, О2 и др. Собранный газ направляется в шшетку //, содержащую раствор хлористого хрома, ще.тючной раствор пирога лло.па или иной поглотитель для определения кислорода. После этого проводится сожжение газа над окисью меди в трубке IV для удаления и определения водорода и окиси углерода. [c.99]

    Большое число фотометрических методов определения кислорода основано на реакциях огкисления неорганических соединений, которые затем взаимодействуют с органическими и неорганическими веществами с образованием окрашенных, соединений. В качестве восстановителей кислорода в щелочной среде часто применяются соли марганца(II), железа(II), хрома(II) и (III), одновалентной или металлической меди. После поглощения кислорода определяют окисленные формы этих элементов и пересчитывают на содержание кислорода. Достаточно pa npo tpaHeHHHM является метод, основанный на окислении в щелочной среде с последующим определением После взаимодействия марганца (IV) в кислой среде с иодидом измеряют оптическую плотность раствора выделившегося иода. [c.175]

    Разбавляют холодной дистиллированной водой до 200—300 мл, добавляют 0,5 мл профильтрованного раствора тиоацетани.чида (2 г реагента в 100 мл ледяной уксусной кислоты) на каждый миллиграмм родия, затем добавляют 2—5 мл 1,0 М раствора хлорида хрома (П). При добавлении реагентов раствор перемешивают, избегая окисления хрома (II) кислородом воздуха. Раствор оставляют на 2—3 час, время от времени помешивая его, затем фильтруют через фильтр из бумаги ватман № 44 (И см) и тщательно отмывают осадок родия разбавленной соляной кислотой (1 99). Фильтрат сохраняют для определения в нем иридия по методике 91. Осадок осторожно прокаливают, нагревают в токе водорода, охлаждают. Обрабатывают соляной кислотой в платиновой чашке и выпаривают досуха. Остаток смачивают соляной кислотой (1 99), фильтруют через фильтр диаметром 9 см из бумаги ватман № 44, промывают горячей водой, прокаливают и восстанавливают. Нагревают в токе хлора до 650—700, охлаждают, обрабатывают царской водкой (1 4) и фильтруют через фильтр из бумаги ватман № 44 (9 см). Оставшийся в осадке родий прокаливают, восстанавливают до металла и взвешивают. [c.27]

    Таким образом, несмотря на большую чувствительность солей двухвалентного хрома к кислороду воздуха, большинство работ свидетельствует о их пригодности в качестве титрантов. Только в одной работе Ф. К. Герке и 3. И. Кардакова [901, основываясь на полученных ими сильно колеблющихся результатах при титровании бихромата, перманганата, ванадата, молибдата и четырехвалентного титана, считают невозможным рекомендовать применение этих солей в повседневных определениях. Неудачи Ф. К- Герке и 3. И. Кардаковой, вероятно, объясняются несовершенством примененной аппаратуры. [c.27]

    Кулонометрические методы определения кислорода применяют при анализе газов, жидкостей и твердых веществ [880, 882—890]. Такие методы основаны на непосредственном восстановлении кислорода на соответствующих электродах или на взаимодействии его с подходящим восстановителем, например с двухвалентным хромом [883, 886]. Определение микроколичеств кислорода в малых объемах газов [887] осуществляют в двухкамерной ячейке с серебряным катодом и платиновым анодом. Метод состоит в электрохимическом восстановлении кислорода с выходом по току, равным 100%. В качестве фона при определении кислорода в инертных газах, газообразных предельных и непредельных углеводородах используют 25% раствор КОН. При определении Ог в углекислом газе или газовых смесях с высоким содержанием СО2 применяют кадмиевый или железный анод. Фоновым электролитом при этом служат 25% раствор К2СО3 или буферная смесь с pH 4. Кулонометрическая ячейка снабжена газовой бюреткой для отбора проб и вспомогательным сосудом, в котором находятся газ или газовая смесь для промывания ячейки. Определение проводят, вводя в ячейку известный объем анализируемого газа и интегрируя количество электричества, протекшее через ячейку в ходе процесса восстановления кислорода. Интегрирование осуществляют графически или с помощью электронного интегратора. Для определения 1—100 частей О2 на 1 млн. частей анализируемого газа необходимо 2 мл пробы, а при определении 0,1—100% О2 —всего лишь сотые доли миллилитра. Ошибка этого способа определения 10 г О2 составляет примерно 5 отн.%. [c.114]

    В результате получают брикеты безуглеродистого феррохрома, содержащего 0,01—0,02% углерода. Лаборатория Актюбипского ферросплавного завода определяла кислород в порошке полуокисленного феррохрома по разности, определяя при этом лишь содержание кремния, хрома, железа, марганца, углерода и серы. Результаты определения кислорода были поэтому, как правило, занижены на 0,7—1,2% (абс.), так как не учитывалось содержание в феррохроме никеля, титана, алюминия, ванадия, меди, фосфора и азота. Однако главным недостатком этого определения кислорода являлась большая продолжительность полного анализа полуокисленного феррохрома, которая составляла 8—12 ч. [c.57]

    Раствор хлорида хрома (II) исключительно легко поглощает кислород. Перед определением не надо удалять двуокись углерода, так кйк в этом случае применяется не щелочной, а кислый раствор. Сероводород также не мешает определению кислорода. Для поглощения примёйяют приблизительно 20%-ный раствор хлорида хрома (И). ОтрабоТаннйй раствор можно регенерировать. [c.767]

    Из других реже применяемых способов определения кислорода необхо димо указать на поглощение кислорода желтым фосфором, раствором хлорида хрома ( r la), аммиачным раствором закиси меди можно также применять взрывной или каталитический способ. В последних случаях перед взрывом или пропусканием анализируемого газа к нему прибавляют водород О количестве кислорода в анализируемом газе судят по уменьшению объема. По уравнению [c.531]

    ОПРЕДЕЛЕНИЕ КИСЛОРОДА И АЗОТА В МОЛИБДЕНЕ И ХРОМЕ МЕТОДОМ ВАКУУМПЛАВЛЕНИЯ [c.281]

    Получение надежных результатов при определении кислорода и азота в молибдене и хроме методом вакуумплавления может быть обеспечено лишь в случае полной диссоциации нитридов и полного восстановления окислов. Метод анализа должен, также обеспечивать лишь минимальные потери экстрагированных газов на металлическом возгоне и учет вторичных реакций в аналитической системе. [c.281]

    Определение кислорода и азота в хроме методом вакуумплавления [c.282]

chem21.info

Хром и кислород - часть 2

Хромовый ангидрид принадлежит к числу наиболее сильных окислителей. Например, этиловый спирт при соприкосновении с ним воспламеняется. Производя окисление, хромовый ангидрид превращается в оксид хрома (III) Cr2 O3 .

Хромовый ангидрид легко растворяется в воде с образованием хромовой и двухромовой кислот.

Кислород ( Oxygenium ). Кислород – самый распространенный элемент земной коры. В свободном состоянии 20,9% кислорода находится в атмосферном воздухе, что составляет приблизительно 1/5 по объему.

Кислород входит в состав почти всех окружающих нас веществ. Так, например, вода, песок, многие горные породы и минералы, составляющие земную кору, содержат кислород. Кислород является также важной частью многих органических соединений, например белков, жиров и углеводов, имеющих исключительно большое значение в жизни растений, животных и человека. Общее количество кислорода в земной коре близко к половине её массы (около 47%).

Природный кислород состоит из трёх стабильных изотопов: 16 О (99,76%), 17 О (0,04%) и 18 О (0,2%).

Получение и свойства кислорода. Кислород был впервые получен в чистом виде К. В. Шееле в 1772г., а затем в 1774г. Д. Пристли (Англия), который выделил го из оксида ртути (II). Однако Пристли не знал, что полученный им газ входит в состав воздуха. Только спустя несколько лет Лавуазье, подробно изучивший свойства этого газа, установил, что он является составной частью воздуха.

В промышленности кислород получают из воздуха, который представляет собой смесь различных газов; основные компоненты в нём – азот и кислород. Для получения кислорода воздух под давлением сжижают. Так как температура кипения жидкого азота (-196˚С) ниже температуры кипения жидкого кислорода (-183˚С), то азот испаряется, а жидкий кислород остаётся. Газообразный кислород хранят в стальных баллонах под давлением 15 МПа. Важнейшим лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества кислорода можно также получать взаимодействием раствора перманганата калия с подкисленным раствором пероксида водорода или термическим разложением некоторых кислородсодержащих веществ, перманганата калия:

2KMnO4 →K2 MnO4 +MnO2 +O2 ↑

Кислород – бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха: масса 1 кислорода при нормальных условиях равна 1,43г, а 1 л воздуха 1,293 г. Кислород растворяется в воде, хотя и в небольших количествах: 100объёмов воды при 0˚С растворяют 4,9, а при 20˚С – 3,1 объёма кислорода.

Кислород образует двухатомные молекулы, характеризующиеся высокой прочностью. При комнатной температуре его диссоциация на атомы ничтожна; лишь при 1500˚С она становится заметной.

Магнитные свойства кислорода указывают на наличие в молекуле О2 двух неспаренных электронов. Эти электроны размещаются на разрыхляющих молекулярных π -орбиталях. Парамагнитность кислорода проявляется, в частности, в том, что жидкий кислород притягивается магнитом.

Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия, как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например, оксид азота(II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением .

Горение в чистом кислороде происходит гораздо энергичнее, чем в воздухе. Хотя при этом выделяется такое же количество теплоты как и при горении в воздухе, но процесс протекает быстрее и выделяющаяся теплота не тратится на нагревание азота воздуха; поэтому температура горения в кислороде значительно выше, чем в воздухе.

Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов – дыхание. Важное значение имеет и другой процесс, в котором участвует кислород, - тление и гниение погибших животных и растений; при этом сложные органические вещества превращаются в более простые (в конечном результате в CO2 , воду и азот), а последние вновь вступают в общий круговорот веществ в природе.

Применение кислорода весьма многообразно. Его применяют для интенсификации химических процессов во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горелках. Кислород используют в медицине при затруднённом дыхании.

mirznanii.com


Смотрите также